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In the past decade, in vitro transcription/translation

technologies have emerged as discovery tools for screening

large protein expression libraries, for the selection of

engineered polypeptide libraries, and as alternatives to

conventional heterologous expression for protein production.

Therapeutic proteins and peptides discovered using ribosome-

based display methods that link genetic information to the

encoded polypeptide generated by cell-free extracts, or

purified translation components, are beginning to move

forward into human clinical trials. This review details the

significant progress in in vitro translation for novel protein and

non-natural amino acid containing peptide discovery

platforms, as well as advances in the clinical-scale

production of therapeutic proteins using cell-free transcription/

translation.
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Introduction
The early demonstration that cell integrity is not required

for protein synthesis [1] has led to recent breakthroughs in

our understanding of ribosomal protein synthesis [2,3],

enabling researchers to reengineer the intricacies of

protein synthesis for various biotechnology applications.

The results of these efforts are now beginning to

converge in highly efficient bottom-up synthetic biology

approaches to reconstruct [4,5] and reengineer [6,7] ribo-

somal translation for high-throughput (HT) applications

in structural genomics and functional protein discovery

[8–10], for ribosome-based selections [11–13], and for

fully integrated scalable protein production [14��] using

cell-free extracts.
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E. coli cell-free extracts — or lysate-derived systems for

protein synthesis — are commonly used because of their

ease of preparation and relatively high productivity.

Though often considered a ‘black-box’, genome and

process engineered cell-free extracts allow exquisite

design and control. They contain the necessary com-

ponents for transcription (template DNA and recombi-

nant T7 RNA polymerase) and protein translation (e.g.

initiation, elongation, and release factors; aminoacyl-

tRNA synthetases (AARSs), and enzymes for energy

generation to co-activate multiple biochemical networks)

in a single integrated platform (Figure 1) [7]. Alternative

systems based on eukaryotic wheat germ [15] or rabbit

reticulocytes have recently been extended with Leisch-

manii [16], Thermus thermophilis [17], and HeLa [18] cell-

free expression systems. In addition, the development of

a reconstituted highly purified E. coli cell-free translation

system (PURE system) has revolutionized the fit for

purpose redesign of the ribosomal translational machinery

(vide infra) [4,19�]. In general, proteins made in cell-free

systems are soluble and functional and the open, flexible

nature of the systems permits addition (or subtraction) of

components, providing an adjustable environment for

protein folding, disulfide bond formation, modification,

or activity.

Cell-free translation of large encoded libraries allows

researchers to explore diverse phenotypic protein

sequence spaces in multiplexed array-based formats in

such diverse fields as systems biology [10,20,21] and

medical diagnostics [22]. More commonly in drug dis-

covery, pooled DNA/mRNA libraries are linked to their

phenotype via cell-free transcription/translation for selec-

tion of engineered polypeptides with high affinity toward

drug targets.

In this review, we first highlight the two most widely

used HT cell-free translation technologies — ribosome

and mRNA display — with respect to their use in

discovery of therapeutic proteins and peptides. We

detail their individual characteristics and explain how

they have been exploited for the successful and effi-

cient generation of potent lead biologics now entering

clinical trials, as well as novel cyclic non-natural amino

acid (nnAA) peptides with small-molecule drug-like

properties. Finally, we summarize recent advances

demonstrating the potential for integrating these cell-

free display-based discovery platforms with cell-free

protein synthesis for cGMP manufacture of clinical

drug product.
www.sciencedirect.com
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Combined transcription and translation using E. coli cell extracts to conduct cell-free protein synthesis [7,14��]. (a) A culture of genome engineered E.

coli cells harvested during exponential growth is used to prepare (b) a cell-free lysate that provides much of the transcription and translation machinery

for protein expression and folding.
Ribosome and mRNA display
The concepts and steps of ribosome and mRNA display

are explained in Figure 2. Although related ribosome-

based technologies such as cell-free protein arrays [20],

and in vitro compartmentalization (IVC) [8] have been

successfully applied to protein and peptide optimization,

we incorporate only some selected articles and refer to

[23,24], and references therein, for more information.

Ribosome display was among the first techniques utilized

for fully ‘in vitro’ directed evolution of peptide and

protein sequences [11]. In ribosome display, a DNA

library that encodes peptides or proteins is transcribed/

translated using prokaryotic or eukaryotic cell-free

expression systems. In the absence of a translational stop

codon, high concentration of magnesium ions, antisense

knockdown of tmRNA levels [25], and low temperature

efficiently stall the ribosome at the end of the mRNA

while the tethered, fully folded protein is presented

outside the ribosome exit tunnel for functional selection

of the mRNA-ribosome-protein ternary complex. After

selective enrichment, ternary complexes are dissociated

by addition of EDTA, the mRNA is recovered, reverse

transcribed, and PCR amplified in order to identify the

genotype associated with the functionally selected

proteins. Additional cycles of mutagenesis and selection

can be applied to favor the accumulation of beneficial

mutations in the pool of selected variants. Ribosome

display has been used to rapidly map areas of antibody

surfaces that are tolerant of amino acid replacement
www.sciencedirect.com 
[26,27], leading to the development of tralokinumab an

anti-IL-13 IgG4 antibody now in clinical trials (Table 1).

In mRNA display [12] (and a related variation, cDNA

display [28]; Figure 2), separately transcribed mRNA is

covalently ligated to a 30 terminal puromycin DNA

adaptor molecule (or 30 internal puromycin and biotin

for cDNA display) that, upon translation, stalls in the A-

site of the ribosome while covalently linked to the poly-

peptide. The covalent mRNA–puromycin–protein

adduct is reverse transcribed to form a stable mRNA-

cDNA hybrid tethered protein. Selection for target bin-

ders is conducted before hydrolyzing the mRNA (or after

mRNA hydrolysis and digestion in cDNA display) and

recovered cDNA is amplified by PCR. mRNA display has

been used to develop high affinity immunoglobulin-like

protein scaffolds (AdnectinsTM) [29–32], several of which

are now in clinical trials (Table 1). mRNA and ribosome

display have been limited to single-chain polypeptides

such as single chain Fvs, Adnectins, and DARPins. How-

ever, Doi and colleagues [33] have recently demonstrated

the potential of selections with heterodimeric Fab anti-

body fragments by combining mRNA display and IVC in

order to limit cross-talk between separately encoded

heavy and light chain genes.

Four key features make these completely in vitro tech-

niques highly efficient for directed evolution of proteins.

First, they are not limited by transformation or phage-

based infections of cells in order to generate and select
Current Opinion in Chemical Biology 2013, 17:420–426
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Figure 2
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Common protocols for directed evolution cycles using in vitro cell-free translation display. Starting with transcription of a DNA library of 1012 to 1014

sequences encoding variants of a protein or peptide, the translated product is trapped either non-covalently as a ternary complex with mRNA and

ribosomes (ribosome display), or covalently tethered to the mRNA transcript using puromycin attached to a DNA oligonucleotide (cDNA and mRNA

display). After the selection of the desired peptide/protein, the encoded sequence information is recovered by reverse transcription and PCR

amplification.
libraries; the library size and diversity is only limited by

the number of ribosomes present in an in vitro translation

reaction and can be as large as 1013 to 1014. Second, linear

template DNA libraries can be rapidly constructed and
Table 1

Representative examples of therapeutics and diagnostics that have r

vitro cell-free translation technologies

Technology Organization/company 

Ribosome display CAT (Medimmune) Tralokinuma

Ribosome display Molecular Partners; Allergan MP0112 DA

mRNA display Adnexus (BMS) Pegdinetanib

mRNA display Adnexus (BMS) FGF21-PKE 

In vitro display Ra Pharmaceuticals Cyclomimeti

Cell-free protein synthesis Sutro Biopharma GM-CSF 

Cell-free protein synthesis Stanford University Anti-CD19-ly

Cell-free protein synthesis RIKEN Innovation Center scFv, MR1-1

Current Opinion in Chemical Biology 2013, 17:420–426 
designed to comprehensively monitor selections using

massively parallel DNA sequencing [34��,35,36]. Third,

the reverse transcriptase and PCR amplification steps can

be used to easily introduce additional diversity between
eached the preclinical or clinical stages of development using in

Molecule (target) Status References

b (IL-13) Phase II [26,50]

RPin (VEGF-A) Phase II [51,52]

 (VEGFR-2) Phase I/II [31,32]

Adnectin (human serum albumin) Phase I

c nnAA peptide (kallikrein) Preclinical www.rapharma.com

Preclinical [14��]

mphoma idiotype diabody Preclinical [53]

-[11C] Preclinical [54�]

www.sciencedirect.com
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generations (e.g. by error-prone PCR and recombination

[37]). For example the CT-322 Adnectin contains

stability mutations outside the designed randomized

loops mutated during affinity maturation [29]. Fourth,

chemical additives or protein factors can be added to

manipulate folding and stability of the displayed protein,

important properties for favorable production of biother-

apeutics. For example chaperones can be added to tune

proper formation of disulfide bonds in antibody fragments

[38��]. In a recent study, Buchanan et al. [39�] were able to

isolate functional G-CSF variants with increased levels of

soluble expression in E. coli after four rounds of ribosome

display selection in the presence of DTT with hydro-

phobic resin-based removal of aggregated variants.

Cell-free display of non-natural peptides using
genetic code reprogramming
Another key advantage of using an in vitro transcription/

translation approach in HT discovery is the ability to

expand the structural and chemical diversity of amino

acids beyond the 20 natural amino acids by designed

manipulation of the genetic code and translation machin-

ery. Early work using E. coli extracts showed the possi-

bilities of genetic code expansion in vitro (hijacking the

UAG stop codon [40] or introduction of four-base codons

[41]). Re-engineering translation by the subtraction of

competing endogenous protein release factor RF1 that

recognizes the UAG stop codon in normal translation

termination, allows efficient production of site-specific

nnAA containing proteins in vitro [4,42,55].

More recently, the PURE system has enabled reprogram-

ming of the genetic code with simultaneous complete

reassignment of multiple codons to different nnAAs. By

removing certain cognate amino acids and AARSs and

adding separately nnAA aminoacylated-tRNAs to recog-

nize the vacant codons, the translation apparatus of E. coli
has been shown to be remarkably tolerant of a wide range

of amino acid derivatives [6]. For example, ribosomal

incorporation of N-substituted amino acids, a modification

that may increase cell permeability, allows selection of

complex peptides with drug-like properties [13,43��].
Some key advantages of this approach are that the large

peptide library sizes accessible via the ribosome may yield

higher-affinity ligands faster than traditional lead optim-

ization by chemical synthesis and nnAAs sample a different

functional and chemical space than even large libraries can

sample with the 20 proteinogenic amino acids.

Genetic code reprogramming does not require an orthog-

onal tRNA body (some endogenous AARSs are not pre-

sent), but does require efficient methods for generating

charged nnAA-tRNAs. Early tRNA ligation strategies

with chemical synthesis are not efficient [6,40]. Suga

and colleagues [43��] addressed this issue by using an

RNA ribozyme aptamer to aminoacylate the 30 end of

tRNAs with nnAAs [44]. As the aminoacylation reaction is
www.sciencedirect.com 
independent of amino-acid side chain structure, including

N-methylation of the alpha-amino group, a wide variety of

nnAAs-tRNAs can be generated. Szostak and colleagues

[45,46] have shown that native and engineered AARSs

can charge a wide array of non-standard amino acids onto

tRNAs under conditions lacking the cognate amino acids.

Once nnAA-tRNAs are produced and genetically repro-

grammed DNA libraries are designed, they may be

selected using cell-free translation display in the PURE

system to enrich for highly modified peptides with high

affinity toward drug targets. Yamagishi et al. [47] per-

formed mRNA display selections for N-methylated cyclic

peptide binders of a formerly nondruggable ubiquitin

ligase enzyme E6AP. The selectant with the highest

binding affinity contained the non-canonical features

found in Cyclosporine A, four N-methyl groups, a D-

amino acid and a macrocyclic backbone. It had a Kd of

0.6 nM and showed micromolar inhibition of polyubiqui-

tinylation activity of E6AP in vitro on its physiological

targets p53 and Prx1. The Szostak group has also ident-

ified a single-digit nM macrocylic peptide inhibitor of

human thrombin using an optimized PURE/mRNA-

display system [48�].

Cell-free protein synthesis for clinical
manufacture
The ability to integrate HT discovery using cell-free

translation with cell-free protein synthesis at manufactur-

ing scale would have distinct advantages over traditional

cell-based methods of biotherapeutic discovery and de-

velopment. For many expression systems, identifying cell

lines that stably synthesize high protein titers of a lead

candidate is a time-consuming and labor-intensive pro-

cess and creates one of the major bottlenecks in protein

drug discovery and development. In the case of antibody

discovery, scFvs and Fabs identified in HT discovery

campaigns often require reformatting into IgGs with uncer-

tain results in mammalian cell expression systems. Inte-

grating cell-free translation at the discovery, preclinical,

and manufacturing scales, all using the same cell-free

extracts, should increase the speed and developability of

new leads continuing through the drug development pipe-

line. Some examples of cell-free produced biologics in

preclinical development are summarized in Table 1.

Until recently cell-free protein production at the multi-

gram and kilogram scale, an essential starting require-

ment for biotherapeutics, has been hampered by the lack

of scalable systems amenable to standard bioreactor con-

figurations at large scale. Zawada et al. [14��] showed that

scalable cell-free protein synthesis is possible using stan-

dard microbial fermentation and process equipment that

are known to scale to thousands of liters under cGMP

manufacturing processes. Efficient, scalable execution of

the bioproduction process starts with high density cell

culture of a highly engineered E. coli strain with fast
Current Opinion in Chemical Biology 2013, 17:420–426
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growth rates to optimize the yield of ribosomes. After cell-

lysis and extract activation, the process validated at 100-L

scale showed high protein synthesis yields of GM-CSF in

a 10-hour batch reaction (Table 1). Yin et al. [38��] used

the scalable cell-free protein synthesis system to produce

antibody fragments and an aglycosylated IgG antibody

containing 16-disulfide bonds. Although the system is

limited to producing proteins with only a few post-trans-

lational modifications, recent demonstration of a glycoen-

gineered E. coli cell-free system [49] suggests that with

further engineering even more complex post-translation-

ally modified proteins may be produced in cell-free

systems at scale. Yin et al. [38��] also showed the ability

to rapidly produce expression libraries of engineered

antibodies in high density formats using cell-free trans-

lation. Using scanning mutagenesis libraries produced by

de novo DNA synthesis with automated parallel cell-free

synthesis and micropurification in plates with off-the

shelf robotics equipment and disposables, it is now

possible to rapidly screen designed libraries of several

thousand variants in a two week ‘make-test cycle’ from

DNA design/synthesis to cell-biology assays. Integrating

such HT cell-free protein arrays with cell-free translation

display methods, and next-generation sequencing [21,36]

should prove particularly valuable for antibody engineer-

ing studies exploring in vitro antibody affinity evolution

and as a rapid way of identifying variants with interesting

properties that can then be rapidly scaled for more

detailed structural and functional characterization.

Conclusions
Cell-free protein synthesis has emerged as a promising

approach to progress novel biologics to clinical testing.

The tremendous speed and diversity of cell-free trans-

lation selection methods has led to their application to the

entire range of polypeptide libraries, from novel nnAA-

containing peptides, to alternative scaffold proteins and

antibodies now in clinical trials. With the advent of

scalable cell-free synthesis for clinical drug manufacture,

we anticipate further improvements in our ability to

discover and deliver safe and efficacious drug candidates

using cell-free protein synthesis.
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