

#### Rapid Design and Manufacture of Single Species, Site-Specific ADCs using Cell-Free Synthesis with nnAAs

From Concept to Clinic in 365 days ?

Trevor J. Hallam, PhD Chief Scientific Officer 3<sup>rd</sup> World ADC Summit, San Francisco October 24<sup>th</sup>, 2012

# ADCs – Exciting prospects but . . .





Heterogeneity translates to poor PK, stability and efficacy



#### The Non-Natural Amino Acid Advantage

- Controlled stability: nnAA chemical space provides alternatives to cysteine or lysine for creating stable MAb~drug junction
- 2. Homogeneity: site-specific conjugation using orthogonal chemistries regulates number and location of drugs attached to Mab



# Anatomy of a Disruptive Protein Design and Manufacturing Solution....

- Rapid Make-Test
  - Fast protein production (from DNA to g's/L in hours)
  - a 1-week cycle time for purification, characterization and testing
  - Micro-titre plate evaluation of 100's of variants in parallel
  - Parallel evaluation of optimal production conditions
- Chemical Diversity
  - Incorporation of non-natural amino acids
- Rapid Scale-up
  - Linearly scalable and predictable expression allows for seamless and rapid progression to specificity testing, efficacy models and GLP tox studies
- Same system for cGMP manufacture







![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_1.jpeg)

![](_page_9_Picture_0.jpeg)

 Examples of Ab Fragments Produced by CF synthesis

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

#### Typical Expression Levels:

- 0.25 -1 Gram / Liter (Pre-Optimized)
- 6-8 Hour Reaction
- 30% Extract

#### **Translation of nnAA-Containing Proteins : Enables Site-Specific Conjugation**

![](_page_10_Figure_1.jpeg)

Su

l **t r O** Biopharma

# Data driven design: production of many variants in hours

![](_page_11_Picture_1.jpeg)

Surface Scan

- Mutate Sites in IgG: Choose nnAA sites using rational design, or just make all of them!
- Produce nnAA IgG: Incorporate nnAA at 100's of chosen sites
- Conjugate: Conjugate nnAA with appropriate chemistry
- Purify: Separate conjugated IgG away from unincorporated linkerwarhead
- Test: Assay conjugated IgG's for binding and cell killing

![](_page_11_Figure_7.jpeg)

### **TAG Screen**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

Cu Free Click Conjugation Chemistry

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

#### Rapid Selection of Optimal Sites for Expression, Conjugation, Binding and Killing

![](_page_14_Figure_1.jpeg)

Sutro

# Site-Specific Incorporation of MMAF Yields Potent Cytotoxic ADC

![](_page_15_Figure_1.jpeg)

- Comparable IC50 to published ADC at equivalent IgG concentration
- More potent at equivalent drug concentration

# Pharmacokinetics of Cell Free Produced ADCs are Comparable to Cell-Based derived ADCs

![](_page_16_Figure_1.jpeg)

CF-Trastuzumab Drug conjugate pharmacokinetics are in good agreement with Trastuzumab- MMAF conjugate literature

|                                | Sutro Data <sup>a</sup>          | SeaGen Data <sup>b</sup>       |
|--------------------------------|----------------------------------|--------------------------------|
|                                | CF-Trastuzumab Drug<br>Conjugate | Trastuzumab MMAF<br>Conjugates |
| AUC <sub>inf</sub> [day/µg/mL] | 248                              | 299                            |
| Clearance [mL/d/kg]            | 8.1                              | 9                              |
| Half-life [d]                  | 8                                | 10                             |

<sup>a</sup>5 mg/kg, Balb-c mice, Sutro <sup>b</sup>2mg/kg, Sprague-Dawley rats (US7994135B2, SeaGen patent 2011)`

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_1.jpeg)

# Efficacy Study: Agly Trastuzumab DC Dose Response

![](_page_18_Figure_1.jpeg)

# Site Dependent Impact on Cell Killing Observed

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

#### TAG Scanning: DAR vs. Cell Killing

Efficient Integration of nnAAs and Conjugation Chemistry are key for manufacturing ADCs

- nnAA Incorporation Efficiency
  - Site Dependence
  - RF1 Attenuation
  - Multiple nnAA Incorporation
- Conjugation Efficiency
  - Site Dependence
  - Improving Conjugation Kinetics

## nnAA Incorporation Efficiency; Site Dependence in HC

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

## nnAA Incorporation Efficiency; Site Dependence in LC

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

# nnAA Incorporation Efficiency:

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

#### **RF1** Attenuation

- nnAA Incorporation Efficiency
- The second second

![](_page_24_Figure_0.jpeg)

## Protease Sensitive RF1 is inactivated during extract production

![](_page_25_Figure_1.jpeg)

| Abbrev. | Sample            |  |
|---------|-------------------|--|
| М       | Marker            |  |
| Р       | Pellet            |  |
| L       | Lysate            |  |
| С       | Clarified         |  |
| 1       | 1 hour time point |  |
| 2       | 2 hour time point |  |
| 3       | 3 hour time point |  |

#### **De-compartmentalized Extract Cleaves RF1**

# New Strains Have Similar Growth Rates To: Control Strain

![](_page_26_Figure_1.jpeg)

#### High Growth Rate is Historically Predictive of Good Extract Performance

# RF1<sup>-</sup> Strain Engineered Extract Boosts nnAA-Protein Production

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

Strain: RF1 Attenuating Modification

# Suppression of amber codon in HC

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

### Incorporation of p-Acetyl Phe into IgG at three selected sites

Su

l **t r O** Biopharma

![](_page_29_Figure_1.jpeg)

RF1 Depletion through Strain Engineering: Sutro Extract Can Produce IgG w/ Multiple nnAA's Sutro

![](_page_30_Picture_1.jpeg)

- Incorporation of multiple nnAAs in each IgG LC and HC
- Enables Multiple (4,6,8,10+) <u>site-specific</u> combinations of warheads/lgG
- Intractable using cell-based systems or wildtype extract due to significant accrued losses in yield
- Combinations of sites screened for:
  - nnAA Incorporation efficiency/expression
  - Conjugation Efficiency
  - Stability
  - PK/Potency in vivo

# 4 nnAA IgG Yields Using Combinations of 2 LC and 2 HC Sites

![](_page_31_Picture_1.jpeg)

- nnAA: nn-AA1
- Synthetase 3

![](_page_31_Figure_4.jpeg)

- nnAA: pN3nnAA
- Synthetase 1

![](_page_31_Figure_7.jpeg)

Several 4 nnAA combos (2LC+2HC) express similarly to WT

#### **Conjugation Efficiency**

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

Cu Free Click Conjugation Chemistry

![](_page_32_Figure_4.jpeg)

ō, ö

ö

0

ČO₂H

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

# **Conjugation Efficiency**

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

# Synthesis of site-specific antibody-drug conjugates using unnatural amino acids

Jun Y. Axup<sup>a,b</sup>, Krishna M. Bajjuri<sup>c</sup>, Melissa Ritland<sup>d</sup>, Benjamin M. Hutchins<sup>a,b</sup>, Chan Hyuk Kim<sup>a,b</sup>, Stephanie A. Kazane<sup>a,b</sup>, Rajkumar Halder<sup>a,b</sup>, Jane S. Forsyth<sup>d</sup>, Antonio F. Santidrian<sup>d</sup>, Karin Stafin<sup>d</sup>, Yingchun Lu<sup>e</sup>, Hon Tran<sup>e</sup>, Aaron J. Seller<sup>e</sup>, Sandra L. Biroc<sup>e</sup>, Aga Szydlik<sup>e</sup>, Jason K. Pinkstaff<sup>e</sup>, Feng Tian<sup>e</sup>, Subhash C. Sinha<sup>c</sup>, Brunhilde Felding-Habermann<sup>d</sup>, Vaughn V. Smider<sup>c,1</sup>, and Peter G. Schultz<sup>a,b,1</sup>

<sup>a</sup>Department of Chemistry, <sup>c</sup>Department of Molecular Biology, <sup>d</sup>Department of Molecular and Experimental Medicine, and <sup>b</sup>The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; and <sup>e</sup>Ambrx, Inc., La Jolla, CA 92037

Contributed by Peter G. Schultz, July 20, 2012 (sent for review January 27, 2012)

![](_page_34_Picture_7.jpeg)

**Conjugation.** Oxime ligation between pAcPhe on the antibody and alkoxyamine-functionalized auristatin was carried out in 100 mM acetate buffer pH 4.5 with 100 μM (5 mg/mL) Fab and 3 mM AF (30-fold excess) for 1–2 d at 37 °C. **IgG was conjugated at 66.7 μM (10 mg/mL) and 1.3 mM AF** (20-fold excess) for 4 d at 37 °C.

### Novel nnAAs with Boosted Conjugation Kinetics

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

New Chemistry offers Improved Kinetics, Flexibility

![](_page_36_Picture_0.jpeg)

![](_page_36_Figure_1.jpeg)

# Some sites are completely conjugated in under 4 hours!

![](_page_37_Figure_1.jpeg)

#### **Cell-Free Manufacturing: GMP Facility a Critical Element**

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

# **Rapid Production of Biotherapeutics**

![](_page_39_Figure_1.jpeg)

Su

tro

- Direct linear scale-up from HTS to production scale
- Uses standard bioreactors & downstream equipment
- Minimal, rapid process development
- Gene sequence to drug substance in days

# Sutro's technology enables Best-in-Class ADCs....

![](_page_40_Picture_1.jpeg)

- Data-driven assessment of many potential ADC variants ensures optimized positioning for suppression, expression, conjugation efficiency, payload, cell killing, stability and pharmacokinetic properties
- Flexible and rapid scaling means pharmacodynamic and exploratory toxicology assessment studies can be front-loaded into the discovery phase
- Material for GLP Tox studies and clinical studies can be delivered in days/weeks from selection of Clinical Development Candidate
- 365 days?