

Optimize Format, Improve Translation & Advance CMC

14 - 17 OCTOBER 2013 | San Francisco Airport Marriott Waterfront

Producing Homogeneous ADCs with Combination Warheads

Trevor J. Hallam, PhD Chief Scientific Officer October 15, 2013

ADCs – State of the Art. . .

Heterogeneity translates to sub-optimal PK, stability and efficacy

Success is a matter of Design

	Efficacy	Resistance	Safety
Antigen	Choice of Epitope Density Internalization rate	Tumor Heterogeneity (inter and Antigen mutation or shedding Therapy-induced changes Alterations in apoptotic pathway	intra Healthy tissue expression
Antibody / Scaffold	Tumor Distribution/Disposit Fc functionality and PK	ion I A	Stability Non-specific Fc binding ADCC and CDC activity
Conjugation	Specificity		Stability
Linkers	Cleavable or non-cleavable Physicochemical props	Immunogenicity	Stability
Warheads	Potency Payload	Mechanism becomes redundan MDR/Pgp status Altered metabolism Immunogenicity	t Bystander effect Systemic release

Next Generation ADC's? Homogeneous and Multi-functional....

Multiple Warhead-Linker Combinations

- Warheads with distinct mechanisms of action that are synergistic – lower payloads improves TI
- Eliminate effects of tumor heterogeneity due to variation in cell proliferation
- Overcome resistance due to toxin transport or metabolism

Single or Multiple Antigen Recognition

- Broaden target population, range of indications
- Enhance internalization
- Eliminate effects of heterogeneous antigen expression
- Overcome resistance due to treatment induced changes in antigen expression, shedding
- Leverage avidity effects to improve TI

Sutro: A Cell-Free Synthetic Biology Platform

High Titers at Any Scale

Rapid Execution of Antibody Discovery Programs

Discover novel antibody fragments using ribosome display and cell free screening

Express antibodies and fragments with cell free protein synthesis

Reformat antibodies/ fragments in a whole host of different frameworks

Choose the "Best Lead" based on in vitro and in vivo activity

Production of Homogeneous ADCs Using Non-Natural AA Incorporation

The Non-Natural Amino Acid Advantage

- Controlled stability: nnAA chemical space provides alternatives to cysteine or lysine for creating stable MAb~drug junction
- 2. Homogeneity: site-specific conjugation using orthogonal chemistries regulates number and location of drugs attached to Mab

Translation of nnAA-Containing Proteins Enables Site-Specific Conjugation

Data Driven Design: Production of Many Variants in Hours

- **Mutate Sites in IgG:** Choose nnAA sites using rational design, or just make all of them!
- Produce nnAA IgG: Incorporate nnAA at 100's of chosen sites
- Conjugate: Conjugate nnAA with appropriate chemistry
- **Purify:** Separate conjugated IgG away from unincorporated linker-warhead
- Test: Assay conjugated IgG's for binding and cell killing

Rapid Selection of Optimal Sites for Expression, Conjugation, Binding and Killing

Translation of nnAA-Containing Proteins Enables Site-Specific Conjugation

RF1

Design of OmpT-susceptible RF1

Conjugation Efficiency

ČO₂H

Ö

Novel Azido nnAAs with Boosted Conjugation Kinetics

New Chemistry offers Improved Kinetics, Flexibility

Novel nnAAs with Boosted Conjugation Kinetics; Best Sites Completely Conjugated in Under 4 hrs

Multiple warhead payload; single species ADC

- Incorporation of multiple nnAAs in each IgG LC and HC
- Intractable using cell-based systems or wildtype extract due to significant accrued losses in yield
- Enables Multiple payloads (4,6,8,10+) of specifically positioned warheads/IgG
- Combinations of sites screened for:
 - nnAA Incorporation efficiency/expression
 - Conjugation Efficiency
 - Stability
 - PK/Potency in vivo

Learnings from ADC Specific Site Conjugation Variants

Site of Conjugation and Killing Activity With **Different Cytotoxin Warheads**

Trastuzumab-CF site specific ADC cell killing activity on SKBR3 cells

MMAE

20

100

nM

0.01

DM1

nM

10000

<u>°-0-0-</u>0

10000

100

Trastuzumab-CF IgG1 and IgG2 Isotype **Drug Conjugates Are Comparable**

Trastuzumab-CF Single Site	HC-Site	DAR	KPL-4 1k, d3	SKBR3 1k, d5	
MMAF ADC			IC50, nM		
1-62	Site 1	1.5	0.11	0.053	
IgGZ	Site 5	1.9	0.071	0.035	
1-01	Site 1	1.5	0.064	0.04	
Igg1	Site 5	1.9	0.076	0.04	

Dose-dependent efficacy of a single conjugationsite homogeneous ADC

- n =10 each treatment group
- All treatments are single dose, i.v. @ t=0
- No significant weight loss observed in any treatment groups

Efficacy is Conjugation-Site Dependent

- n =10 each treatment group
- All treatments (except Trastuzumab) are single intra-venous dose @ t=0
- Trastuzumab multiple dose group dosed i.p
- No significant weight loss observed in any treatment group

Characterizing Multiple Site Specific

24

DAR

1.8

1.5

4.0

1.8

1.4

3.8

1.9

1.5

3.9

Multiple Site ADC is more Efficacious than Single Site ADC at Equivalent Dosero

← Free Drug, 0.54mg/kg

Vehicle

- Trastuzumab-CF HC Site 1, unconjugated
- Trastuzumab-HC Site 1 MMAF ADC
- Trastuzumab-HC Site 1 LC Site 2 MMAF ADC
- Trastuzumab-CHO 1x30mg/kg (t =0), 3x15mg/kg (weekly)

- KPL-4 Orthotopic breast cancer model
- ADC and Control, Single dose, i.v.
- Trastuzumab-CHO, multiple dose, i.p.

Site Transfer across Scaffolds: IgG1 vs. scFv-Fc

Site Specific ADC: IgG1 and scFv-Fc Comparison

Site 4 MMAF ADC Scaffold	DAR	Cell Killing IC50, nM	Cell Binding Kd, nM
IgG1 HC-CF	2.0	0.034	2.3
ScFv-Fc-CF	2.0	0.06	5.0
Trastuzumab- CHO	NA	NA	2.0

Site Specific ADC: IgG1 and scFv-Fc Comparison PK and conjugate stability *in vivo*

Site 4 MMAF ADC Scaffold	Terminal t _{1/2} (day)	Cl (mL/day/kg)
IgG1 HC-CF	11.2	7.6
ScFv-Fc-CF	11.9	6.2

scFv-Fc Drug Conjugate Scaffolds are very effective

- n =10 each treatment group
- All treatments are single dose, i.v. @ t=0
- No significant weight loss observed in any treatment groups

Combination Warheads; single species ADC

- Incorporation of two different nnAAs in multiple copy number in IgG LC and HC
- Enables Multiple payloads (4,6,8,10+) of two different specifically positioned warheads/ lgG
- Combinations of sites screened for:
 - nnAA Incorporation efficiency/expression
 - Conjugation Efficiency
 - Stability
 - PK/Potency in vivo

The goal:

A system to incorporate 2 distinct nnAA's with mutually orthogonal chemistries (azide and tetrazine) into a single protein in a single CF reaction

The components*:

2 synthetases

- 2 nnAAs (azide and tetrazine)
- 2 tRNAs (can decode TAG, TAA, TGA, or 4-base codon)

*must be orthogonal to each other and to *E.coli*

Combination Warheads: Development of Dual Payload ADCs

Discovery of novel synthetases at Sutro

- 2000 synthetase variants from a rationallydesigned library are expressed in individual CF reactions.
- Synthetase from aaRS expression reaction is added to GFP (K49TAG) reporter cell free reactions +/- nnAA.
- Desired synthetases will mediate amber suppression and GFP fluorescence in the presence but not absence of nnAA.

Rationally-designed MjYRS library

	Library	Ρ	os	itions
-				

Tyr32 = Ala, Val, Leu, Thr

Leu65 = Ala, Leu, Ile, Val

Phe108 = Phe, Tyr, Trp

GIn109 = Met, Leu, Ile, GIn

Asp158 = Ala, Gly

lle159 = Ala, Gly, Val, Ser

4x4x3x4x2x4 = 1536 unique variants

Testing ~2000 clones against 3 different nnAA's

Identification of a high fidelity, proprietary pAMFRS

<u>^</u>								
pAMFRS variant	32	65	108	109	158	159	IgG HC 136- AB3627 DAR	EC50 (nM)
A01	т	А	Y	L	А	s	1.2	0.071
A04	v	А	w	м	А	G	1.5	0.047
B03	А	v	w	Q	А	G	1.9	0.043
C10	v	v	Y	Q	А	v	1.6	0.048
D08	т	v	w	Q	A	s	1.8	0.044
C02	v	v	w	I	А	s	1.5	0.044

Λ

- pAMFRS variant B3 produces potent ADCs with DAR of 1.9
- Fidelity of pAMF incorporation >99.8% by peptide LC-MS/MS
- Novel amino acid sequence

Tetrazine nnAA's to enable a second conjugation chemistry

- Tetrazine moiety enables retro Diels-Alder conjugation
- 30x faster than copper-free click, complete conjugation in minutes
- Compatible with and orthogonal to azide-click chemistry
- Pyridyl-derivative nnAAs are more soluble than phenylalanine derivatives

Dual Warhead ADC Concept

DAR Analysis of Combination Warheads

Drug1 on HC	Drug1 DAR	Drug2 on LC	Drug2 DAR	Total DAR
MMAF	1.8	SN-38	1.4	3.2
MMAF	1.8	PBD dimer	1.5	3.4
MMAF	1.9	Gemcitabine	1.6	3.6
PBD dimer	1.9	MMAF	1.7	3.7
Gemcitabine	2.0	MMAF	1.6	3.5

PBD Dimer/ MMAF Dual Warhead ADC

DAR=3.7

Homogeneous, Multispecific Antibody Drug Combination Conjugates

- Multiple warheads
 - to target synergistic mechanisms to improve safety
 - to simultaneously target potential resistance pathways
- Multiple epitope targeting
 - to increase internalization rate of an antigen
- Multiple antigen targeting
 - to increase apparent affinity to less densely expressed antigens
 - to give better specificity over normal healthy tissues
 - to address antigen expression heterogeneity of tumor