

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Targeting CD74 with Novel Antibody Drug Conjugates (ADCs) for the Treatment of B-Cell Non-Hodgkin's Lymphoma

Arturo Molina, MD, MS Sutro Biopharma

> ASH Annual Meeting December 4, 2016

Co-Authors & Disclosures

Sutro Biopharma	Xiaofan Li, Cristina Abrahams, Millicent Embry, Abigail Yu, James Zawada, Heather Stephenson, Maureen Bruhns, Stuart Bussell, Alexander Steiner, Adam Galan, Toni Kline, Alice Yam, Ryan Stafford, Heidi Hoffmann, Shannon Matheny, Venita DeAlmeida, Nicki Vasquez, Henry Heinsohn, Aaron Sato, Trevor Hallam and Mark Lupher
Celgene	Jason Kahana, Michael Brown, Rama Krishna Narla, Leo Barnes, Eric Schwartz, John Boylan

CD74 Expression in B-cell Lymphoma and Myeloma

- CD74 is a transmembrane glycoprotein involved in MHC protein formation and transport
- Observed in ~90% of B-cell malignancies evaluated
- Minimally expressed in normal tissue

Immunohistology of patient biopsy specimens					
Diagnosis	No. positive / no. tested	% Target cells stained			
Follicular lymphoma	8/9	>95%			
Diffuse large B-cell lymphoma	4/4	~80%			
Other NHL	31/35	ND			
Small lymphocytic lymphoma / CLL	14/14	>90%			
Multiple Myeloma	19/22	16/22, >95%; 3/22, ~50%			

Stein R, et al. Clin. Cancer Res. 2007

Antibody Drug Conjugates: Components and Mechanism of Action

American Society *of* Hematology

Sutro's CD74-Targeting ADCs: Cell-Free Aglycosylated Antibody Synthesis With Site-Specific Conjugation

STRO-001 and SP7676: Combining Optimized Antibody, Conjugation Sites, Linker and Warhead

Antibody:

Aglycosylated, high affinity and specificity

Warhead:

Non-cleavable maytansinoid linker-warhead. DAR of 2. Major catabolite has limited permeability

Optimized Conjugation Sites:

Specific sites that confer the highest linker drug stability in vivo, resulting in antibody with best activity

Linker:

ADC very stable in plasma, drug only released intracellularly, thereby higher specificity for target cells

Cytotoxicity of STRO-001 in ABC-DLBCL Cell Lines

Efficacy of STRO-001 in GCB-DLBCL Cell Lines

Efficacy of STRO-001 in Mantle Cell Lymphoma Cell Lines

		STRO-001	
🔶 Rec-1	Cell Line	IC50 (nM)	Span (%)
➔ JVM-2	Mino	0.5	97
🔶 Mino	JVM-2	1.2	60
🔶 JeKo-1	Rec-1	15	53
	JeKo-1	0.4	97

American Society of Hematology

Cytotoxicity of STRO-001 in Other B-cell Malignant Cell Lines

Follicular, Hodgkin's, ALL, CLL

SP7676 is Active in WSU-DLCL2 "Double Hit" GCB-DLBCL Xenograft Model

SP7676 Exhibits Potent Anti-tumor Activity in the ABC-DLBCL OCI-LY10 Xenograft Model

American Society *of* Hematology

STRO-001 and SP7676 are Equally Efficacious in the SU-DHL-6 (GCB) Tumor Model

STRO-001 Inhibits Tumor Growth in Dose-Dependent Manner in SU-DHL-6 Xenografts

STRO-001 and SP7676 Ablate Myeloma Cells in Bone Marrow in ARP-1 Disseminated Myeloma Model

- Poster #4465 Monday, Dec 5, 6pm-8pm

STRO-001 Inhibits Tumor Growth in ARP-1 Disseminated Myeloma Model

- Poster #4465 Monday, Dec 5 6pm-8pm

STRO-001 (3 mg/kg, q1wx4) inhibits visceral tumor growth

STRO-001 Induces Dose-Responsive Ablation Of B-cells in Cynomolgous Monkeys

2 doses total, given Days 1 and Day 15; Day 15 samples pre-dose

Conclusions

- Sutro Biopharma's cell-free antibody synthesis and site-specific conjugation technologies were used to generate optimized CD74targeting ADCs
- STRO-001 exhibits potent cell killing across multiple lymphoma cell lines
- STRO-001 and SP7676, exhibit potent anti-tumor activity in lymphoma and myeloma xenograft models, including double-hit NHL
 - Combination studies with standard of care agents are ongoing
- STRO-001 produces dose-dependent B cell depletion, consistent with the intended pharmacodynamic effect
- STRO-001 has been selected for further development
 - GLP toxicology and IND-enabling studies initiated