

4th Annual Evercore ISI HealthCONx Conference

November 2021

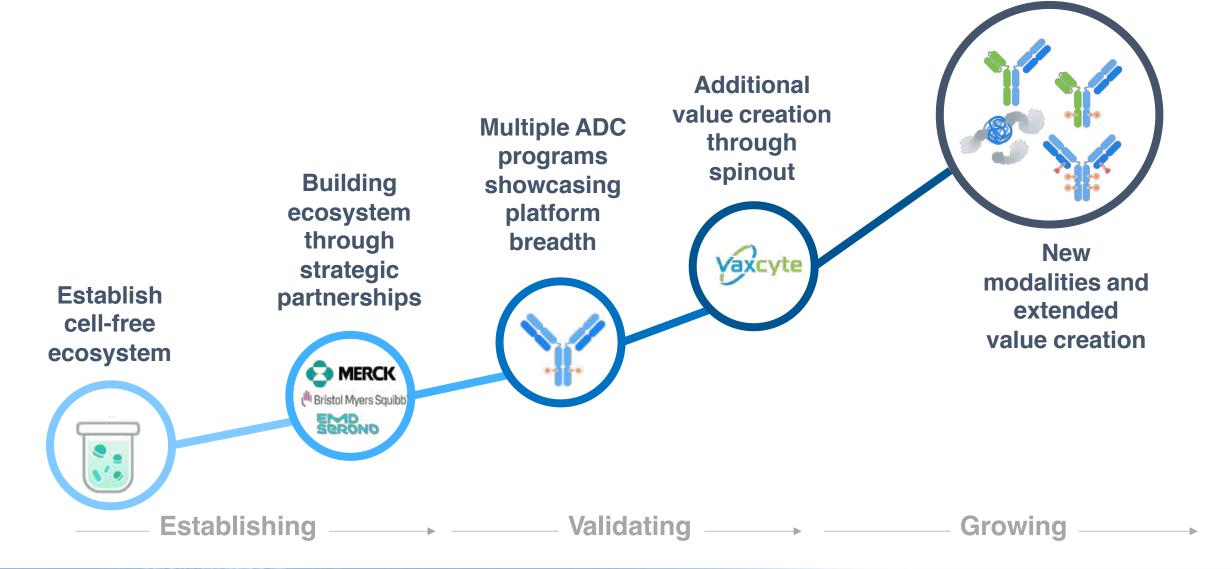
Sutro Biopharma NASDAQ: STRO

Forward Looking Statements

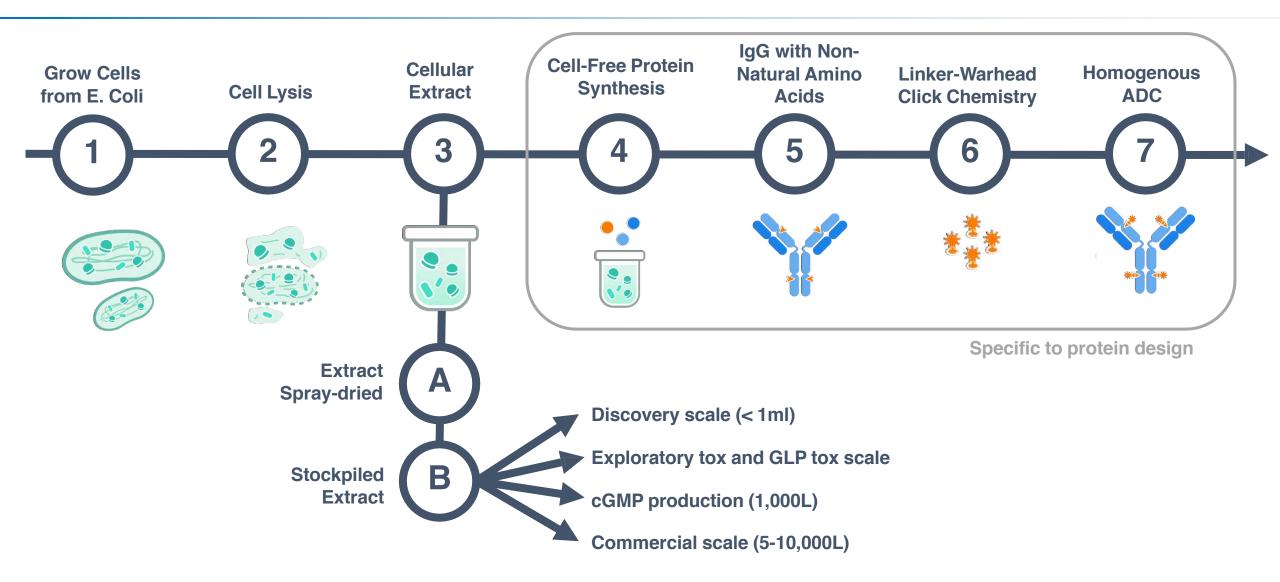
This presentation and the accompanying oral presentation contain "forward-looking" statements that are based on our management's beliefs and assumptions and on information currently available to management. Forward-looking statements include all statements other than statements of historical fact contained in this presentation, including information concerning our future financial performance, business plans and objectives, current and future clinical activities, timing and success of our ongoing and planned clinical trials and related data, updates and results of our clinical trials and related data, timing and success of our planned development activities, our ability to obtain and maintain regulatory approval, the potential therapeutic benefits and economic value of our product candidates, potential growth opportunities, financing plans, competitive position, industry environment and potential market opportunities.

Forward-looking statements are subject to known and unknown risks, uncertainties, assumptions and other factors, including risks and uncertainties related to our cash forecasts, our and our collaborators' ability to advance our product candidates, the receipt and timing of potential regulatory submissions, designations, approvals and commercialization of product candidates, the timing and results of preclinical and clinical trials, and the expected impact of the COVID-19 pandemic on our operations. It is not possible for our management to predict all risks, nor can we assess the impact of all factors on our business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in any forward-looking statements we may make. These factors, together with those that may be described in greater detail under the heading "Risk Factors" contained in our most recent Annual Report on Form 10-K, Quarterly Report on Form 10-Q and other reports the company files from time to time with the Securities and Exchange Commission, may cause our actual results, performance or achievements to differ materially and adversely from those anticipated or implied by our forward-looking statements.

You should not rely upon forward-looking statements as predictions of future events. Although our management believes that the expectations reflected in our forward-looking statements are reasonable, we cannot guarantee that the future results, levels of activity, performance or events and circumstances described in the forward-looking statements will be achieved or occur. Moreover, neither we nor our management assume responsibility for the accuracy and completeness of the forward-looking statements. We undertake no obligation to publicly update any forward-looking statements for any reason after the date of this presentation to conform these statements to actual results or to changes in our expectations, except as required by law.


This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and growth and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions, and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.

This presentation shall not constitute an offer to sell or the solicitation of an offer to buy, nor shall there be any sale of these securities in any state or other jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or other jurisdiction.


Pioneer and Leader in Cell-Free Technology

Optimizing cell-free platform for ADCs and beyond

Industry Leading Cell-Free Protein Synthesis Platform

GMP production yields consistent and scalable end-products

Advantages of Precision Protein Therapeutics

Homogenous, precisely designed complex biologics with optimized performance

Challenges in Traditional Cell-Based Complex Biologics Discovery and Manufacturing

Months to discover lead drug candidates using transient stable cell lines evaluating a handful of candidates

Conjugations incomplete and unstable creating poorly optimized products, especially with increasing complexity in conjugations

Heterogeneous mixtures have less favorable therapeutic window due to varying performance of each species

Cell-based production requires different process with scale, causing complexity and unreliability with CMC and manufacturing

Advantages of Sutro's Cell-Free Synthesis
Platform for Best-in-Class Biologics

Create in parallel, in weeks, hundreds of protein variants to **empirically select the best** lead candidate based on *in vivo* performance

Click chemistry and non-natural amino acids completely conjugate at precise positions, without loss of efficiency even with increasing complexity

Precisely designed proteins in a **homogeneous product widens therapeutic window** due to the selection of the best single species

Cell-free production is scalable – the same process in lead discovery as at commercial scale

Deep Arsenal of Tools in the R&D Pipeline Available to Attack Cancer (1)

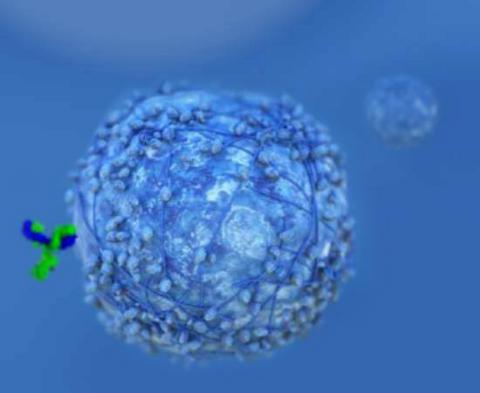
Novel and precise design to drive adaptive and protective immune responses

	Bispecific Antibody	Co	Conjugated Antibody		
Modality	Immune Cell Engager	ADC or ISAC	iADC	Bispecific ADC	Prodrug Cytokine Derivative
Target	Tumor or Stromal Antigen Immune Cell Engager	Tumor Antigen	Tumor Antigen	Dual Tumor Antigens	Tumor Selective Mask
Structure					cytokine Releasable mask
Drug Properties	Optimized format and affinity Improved specificity for optimized therapeutic window	ISAC: Immune- stimulating ADC: targeting novel payloads	Site-specific dual drug conjugate with complementary modalities (TME modulator +/- immune modulator)	Enhanced tumor targeting of cytotoxic payloads	Prodrug cytokine targeting functional cytokine to tumor

⁽¹⁾ Molecules are designed and enabled using Sutro's XpressCF+™ platform

Cell-Free Platform Delivering Robust Pipeline

Four product candidates in the clinic and late-stage discovery programs


Modality	Program	Target	Indication	Discovery	Preclinical	Phase 1/1b	Phase 2/3	Partner
			Ovarian	Fast Track Design	nation			
	STRO-002	FolRα ADC	Endometrial					
			NSCLC					
Antibody-Drug	CTDO 001(1)	CD 74 ADC	Lymphomas					
Conjugate	STRO-001 ⁽¹⁾	CD-74 ADC	Multiple Myeloma	Orphan Drug Des	ignation			
	CC-99712	BCMA ADC	Multiple Myeloma	Orphan Drug Des	ignation			(^(l) Bristol Myers Squibb
		GSI combo	Multiple Myeloma					(^(l) Bristol Myers Squibb
	Discovery	ROR1, Tissue Factor	Solid Tumors					
Bispecific ADC	M1231	MUC1-EGFR ADC	NSCLC & Esophageal Cancer					EMD SEROND (2
T-Cell Engager	Preclinical	5T4-CD3 TCE	Solid Tumors					
	Not Disclosed	Cytokine target (3)	Cancer & Autoimmune					MERCK
Cytokine Derivative	Not Disclosed	Cytokine target	Cancer & Autoimmune					MERCK
	Discovery	IFNα, IL-12	Solid Tumors					
Vaccine	VAX-24	24-valent pneumococcal conjugate vaccine	Invasive Pneumococcal Disease					Vaxcyte

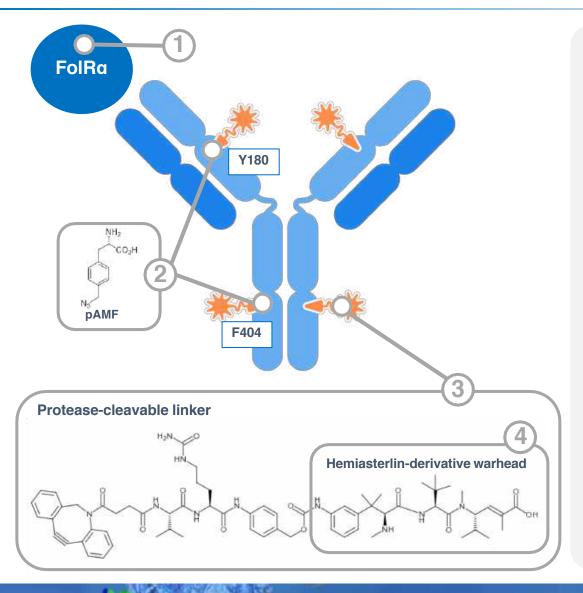
⁽¹⁾ STRO-001 is partnered with BioNova Pharmaceuticals Limited for development in Greater China, including mainland China, Hong Kong, Macau, and Taiwan

⁽²⁾ EMD Serono is the biopharmaceutical business of Merck KGaA, Darmstadt Germany in the US

⁽³⁾ Program includes two molecules going after an undisclosed cytokine target

STRO 002

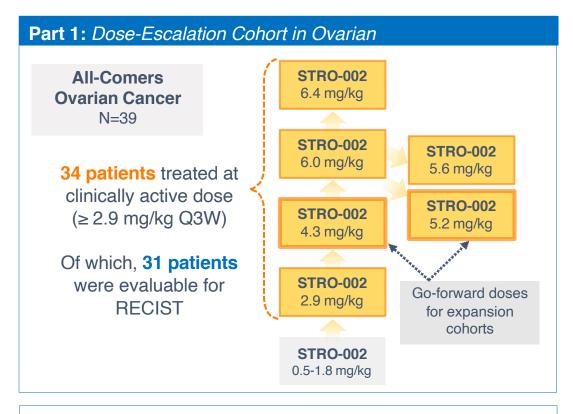
FolRa-Targeting ADC


Potential Best-in-Class ADC for Ovarian and Endometrial Cancers

STRO-002 Potentially Best-in-Class ADC for Ovarian Cancers

FolRa targeting ADC with tubulin inhibitor cytotoxin potentially induces immunogenic cell death

STRO-002 is a homogeneous antibody drug conjugate (ADC) with a drug-antibody ratio (DAR) of 4, targeting folate-receptor alpha (FoIRa):


- FolRa is overexpressed in certain cancers including ovarian cancer and endometrial cancer
- Precisely positioned **non-natural amino acids**, p-azidomethyl-L-phenylalanine, at positions Y180 and F404 on the heavy chain
- 3 Stable protease-cleavable linkers, with rapid clearance of toxic catabolite after release and cell killing
- Warhead is hemiasterlin-derivative⁽¹⁾ with potentially dual mechanism against the tumor tubulin-inhibitor cytotoxin, less sensitive to P-gp transport and induces immunogenic response upon cell death⁽²⁾

(1) Sutro-proprietary tubulin-targeting 3-aminophenol hemiasterlin warhead, SC209 (2)Based on STRO-002 pre-clinical models showing immune stimulation at site of tumor upon cell death

STRO-002-GM1 Dose-Escalation Cohort Has Been Completed

Heavily pre-treated ovarian cancer patients with six median line of prior therapies

Study Update:

- Dose-escalation enrollment completed August 2020
- Updated dose-escalation data as of April 23, 2021 was presented at 2021 ASCO Annual Meeting in June 2021

Baseline Characteristic	All Patients N=39
Median age	61 years (range: 48–79)
Median time since diagnosis	3.9 years (range: 0.7–17.0)
Median number of prior lines of therapy	6 lines (range: 1–11)
Previous therapies, n (%)	
Platinum	39 (100%)
≥ 3 prior platinum regimens	18 (46%)
Taxanes	38 (97%)
Bevacizumab	32 (82%)
PARP inhibitors	23 (59%)
Checkpoint inhibitors	8 (21%)
Experimental therapy	14 (36%)

Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting

STRO-002 Was Generally Well Tolerated

86% of TEAEs remain Grade 1-2 and no observed ocular toxicity signal

Dose Levels in Dose-Escalation

Dose Levels (Q3W)	All Patients (N=39)
0.5 mg/kg, 1.0 mg/kg, and 1.8 mg/kg	5 (13%)
2.9 mg/kg	3 (8%)
4.3 mg/kg	5 (13%)
5.2 mg/kg	12 (31%)
5.6 mg/kg	3 (8%)
6.0 mg/kg ⁽¹⁾	10 (26%)
6.4 mg/kg ⁽¹⁾	1 (3%)

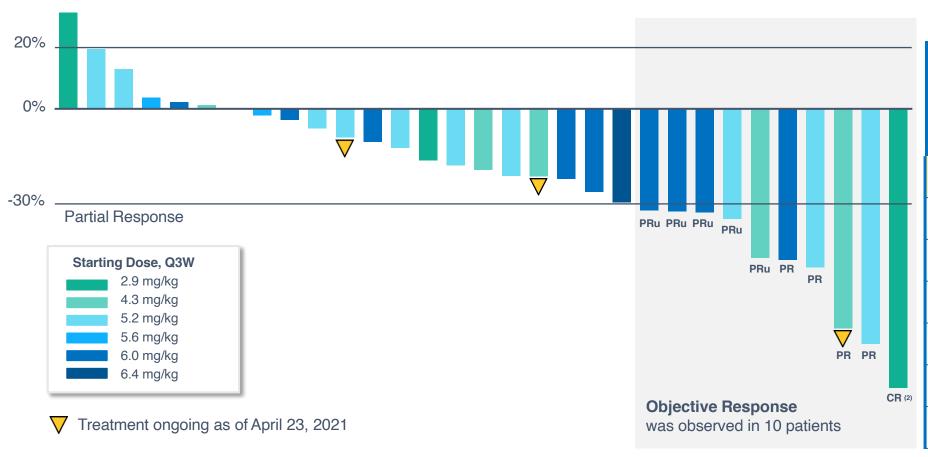
Common TEAEs > 25% By Grade (2)

All Safety Evaluable Patients	Grade 1 N (%)	Grade 2 N (%)	Grade 3 N (%)	Grade 4 N (%)	Overall (N=39) N (%)
Fatigue	7 (18)	19 (49)	4 (10)	0	30 (77)
Nausea	15 (39)	11 (28)	0	0	26 (67)
Constipation	12 (31)	13 (33)	0	0	25 (64)
Neutropenia (3)	0	0	8 (21)	17 (44)	25 (64)
Decreased appetite	10 (26)	10 (26)	0	0	20 (51)
Arthralgia	7 (18)	7 (18)	5 (13)	0	19 (49)
Neuropathy (4)	3 (8)	13 (33)	3 (8)	0	19 (49)
Abdominal pain	7 (18)	6 (15)	3 (8)	0	16 (41)
Vomiting	8 (21)	7 (18)	0	0	15 (39)
AST increased	10 (26)	3 (8)	2 (5)	0	15 (39)
Diarrhea	8 (21)	3 (8)	1 (3)	0	12 (31)
Dizziness	9 (23)	3 (8)	0	0	12 (31)
Dry eye	4 (10)	8 (21)	0	0	12 (31)
Anemia	3 (8)	6 (15)	2 (5)	0	11 (28)
Pyrexia	8 (21)	3 (8)	0	0	11 (28)
Headache	7 (18)	3 (8)	0	0	10 (26)
Insomnia	6 (15)	4 (10)	0	0	10 (26)

⁽¹⁾ MTD was not reached; DLTs occurred in 2 patients: Grade 2 neuropathy/Grade 3 arthralgia at 6.0 mg/kg and Grade 3 bone pain at 6.4 mg/kg

⁽²⁾ Not included in table are two Grade 5 events, both previously reported and unrelated to study drug by investigator assessment: death not otherwise specified and acute GI bleed

⁽³⁾ Neutropenia included the following preferred terms: neutropenia, febrile neutropenia, and neutrophil count decreased


⁽⁴⁾ Neuropathy included the following preferred terms: neuropathy peripheral and peripheral sensory neuropathy

Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting

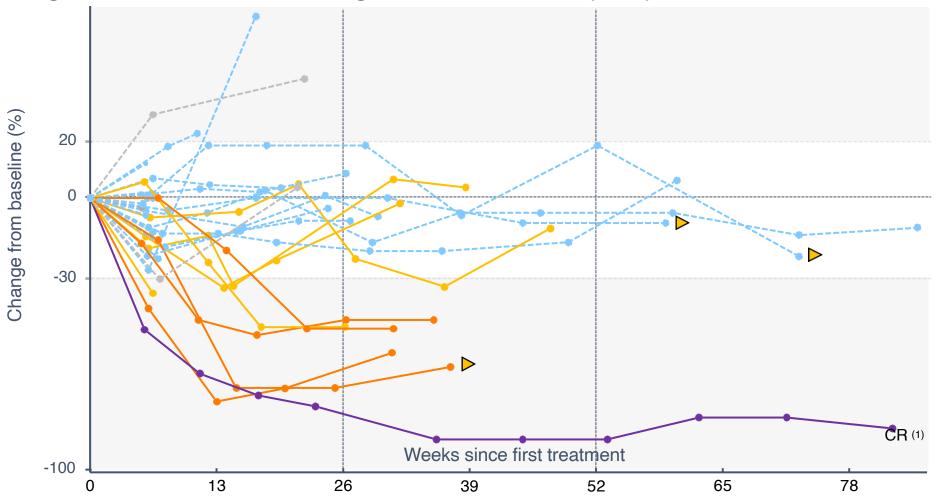
Tumor Reduction Observed in Majority of Patients

10 patients met criteria for RECIST response including one CR

Maximum Change (1) in Tumor Target Lesions (N=31)

Objective Response per RECIST v1.1	RECIST- Evaluable Population (N=31)
Responders	10
CR (2)	1
PR	9
Confirmed	4
Unconfirmed	5
SD	18
PD	3

Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting

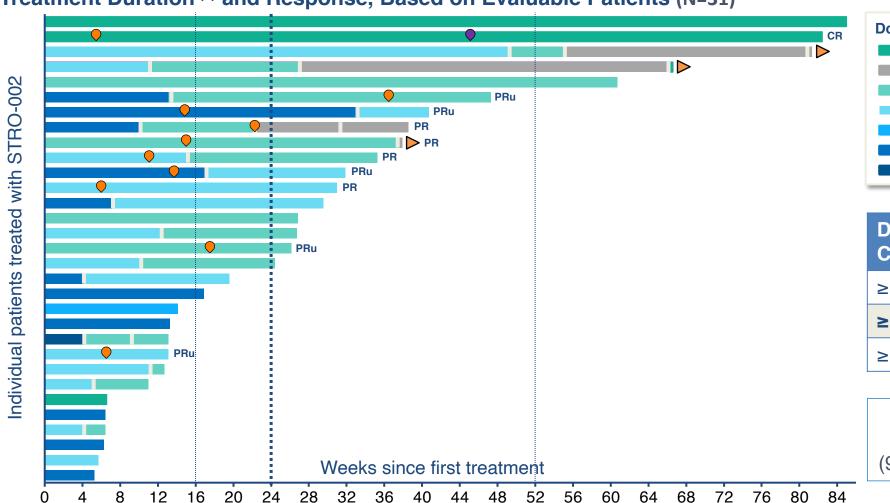

⁽¹⁾ Maximum % change from baseline in sum of longest diameter in evaluable patients treated with STRO-002 at ≥ 2.9 mg/kg

⁽²⁾ CR in patient treated at 2.9 mg/kg with resolution of peritoneal disease

Tumor Regression and Control Over Time

Deepening of responses and two patients with prolonged stable disease remaining on study

Change in Sum of Diameters for Target Lesions Over Time (N=31)


(1) CR in patient treated at 2.9 mg/kg with resolution of peritoneal disease Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting

Clinical Benefit Seen in Heavily Pre-Treated Patient Population

Median duration of response is 5.8 months and three patients remained on study at over 18 months

Treatment Duration (1) and Response, Based on Evaluable Patients (N=31)

Dose Level	PR
2.9 mg/kg 3.5 mg/kg 4.3 mg/kg 5.2 mg/kg 5.6 mg/kg 6.0 mg/kg 6.4 mg/kg	CR Treatment ongoing as of April 23, 2021 Dose adjustment

Disease Control Rate	RECIST-Evaluable Population
≥ 52 weeks	5 (16%)
≥ 24 weeks	17 (55%)
≥ 16 weeks	19 (61%)

Median Duration of Response (DOR) (2) is 5.8 months

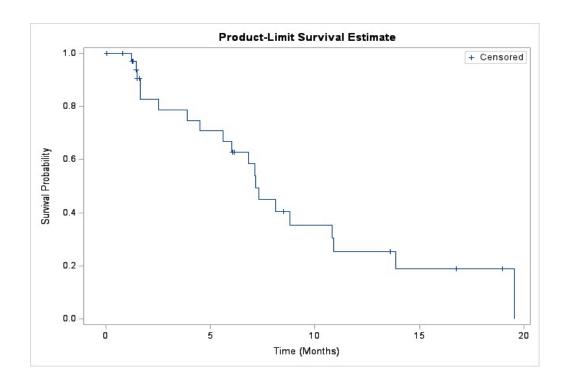
(95% CI: 2.0 months, not evaluable)

Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting

⁽¹⁾ Calculated as date of PD or time from first dose to last dose given (including 4 patients deriving clinical benefit post progression per investigator assessment)

⁽²⁾ DOR is on 5 confirmed responders (1 CR and 4 PRs)

Favorable PFS Compared to Chemotherapy and Other Agents


Based on Kaplan-Meier estimates, median PFS was 7.2 months

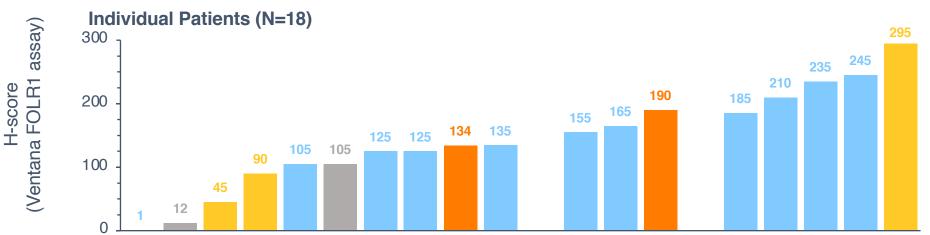
Durability at a Median Study Follow-up of 8.4 Months

Endpoint		Median	95% CI
PFS (1)	(N=39)	7.2 months	(4.5 months, 10.8 months)
DOR (2)	(N=5)	5.8 months	(2.0 months, not evaluable)

FORWARD I study showed median PFS of **4.1 months for mirvetuximab** and **4.4 months for chemotherapy** (HR 0.98, p=0.897)

Source: Moore, K.N., et al. (2021) Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. *Annals of Oncology*. https://doi.org/10.1016/j.annonc.2021.02.017

Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting


⁽¹⁾ PFS is calculated on 39 patients from the time from the first dose of study treatment until the time of death or progressive disease (PD) whichever occurs first. If no death or PD, PFS is censored at last disease assessment

⁽²⁾ DOR is on 5 patients on confirmed responses (1 CR and 4 PRs)

FolRa-Expression by Immunohistochemistry

Responses and anti-tumor activity observed across various FolRa-expression levels

Immunohistochemistry Data (1) for Patients Treated at ≥ 2.9 mg/kg

FOLR1 PS2+ Score:	Weak/Absent Expression	Moderate Expression	High Expression
PR	1	1	0
PRu	2	0	1
SD	5	2	4
PD	2	0	0

⁽¹⁾ Assessed by Ventana FOLR1 expression assay based on available archival tissue from dose-escalation patients and scored using H-score and PS2 methods Note: Dose-escalation data as of April 23, 2021 and was presented at the 2021 ASCO Annual Meeting

Expanding the STRO-002 Franchise

Enrollment completed in Dose-Expansion Cohort and new studies initiated

Ovarian Cancer

Dose-Escalation Cohort

- 39 patients, 31 evaluable at active doses
- Enrollment completed Aug 2020
- **Unselected** for FolRa-expression levels
- Median of <u>6 prior lines</u> of therapy
- Updated at ASCO 2021
- 1 CR, 4 PRs and 5 unconfirmed PRs
- DoR of 5.8 months
- 86% of TEAEs Grade 1-2 and no observed ocular toxicity signal

Dose-Expansion Cohort

- > 40 patients enrolled in US and Spain sites
- Enrollment completed Nov 2021, FPI in Jan 2021
- Unselected for FolRa; tissue required for analysis
- 1-3 prior lines of therapy, platinum resistant and ≥ 2 prior lines of platinum therapy
- Interim data expected 2H 2021

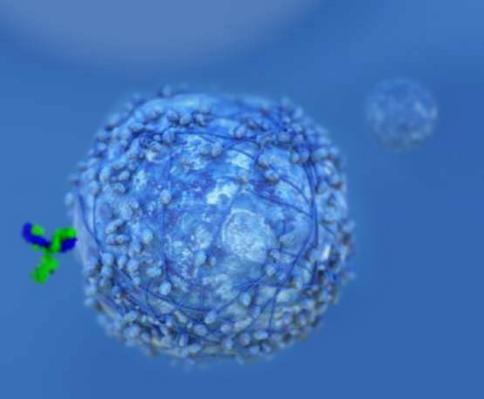
Combo Trial with Bevacizumab

- STRO-002 in combination with bevacizumab
- Protocol cleared by FDA; FPI planned for 2H 2021

Registration-Directed Trial

Pending FDA EOP1/2 Meeting Precedent from single-arm registration-directed trial in advanced ovarian cancer

Other Solid Tumor Indications

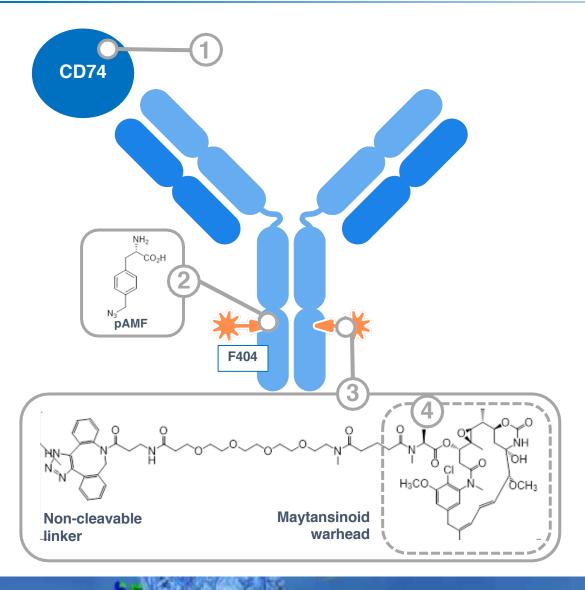

Endometrial Cancer Cohort

- Preselected for FolRa-expression levels
- Initial enrollment planned for ~15 patients
- Cohort is open and enrolling patients

NSCLC

- Potential for a basket study design with other FolRa expressing cancers
- Preclinical work ongoing

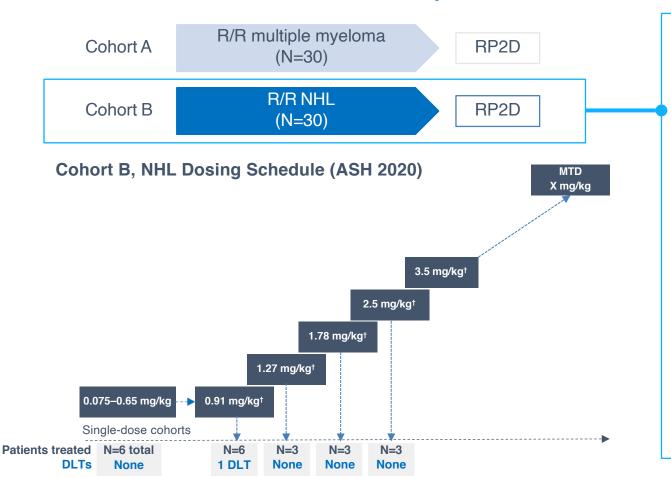
STRO 001


CD74-Targeting ADC

Potential First and Best-in-Class ADC for B-Cell Malignancies

Potential First-in-Class Molecule for Patients with NHL and MM

Stable CD74 targeting ADC for hematological cancers designed to minimize bystander effects


STRO-001 is a homogeneous antibody drug conjugate (ADC) with a drug-antibody ratio (DAR) of 2, targeting CD74:

- CD74 is expressed in many hematological cancers and rapidly internalized
- Conjugation through precisely positioned nonnatural amino acids. p-azidomethyl-Lphenylalanine, at positions F404 on the heavy chain
- 3 Comprises two non-cleavable linker-warheads that are **stable in circulation**
- The active catabolite, **Maytansinoid** derivative, efficiently kills tumor cells following internalization of the ADC and was designed to **minimize** bystander effects

STRO-001-BCM1 Study Design and Updates

Ongoing Phase 1 dose-escalation study with NHL update at ASH 2020

STRO-001-BCM1 Dose-Escalation Study

NHL Cohort Update at ASH 2020

A total of **21 patients** have been treated with STRO-001 and **18 patients** were evaluable for response as of October 30, 2020

Dose range 0.05-2.5 mg/kg and MTD has not been reached

1 DLT of grade 3 pulmonary embolism was observed ⁽¹⁾

Following previously announced **protocol amendment** requiring pre-screening for patients at risk for thromboses, **no additional thromboembolic events** have been observed

Dosing frequency was modified from Q2W (28-day cycle) to **Q3W** (21-day cycle) for doses ≥ 0.91 mg/kg

Note: Data as of October 30, 2020 from data reported at ASH 2020.

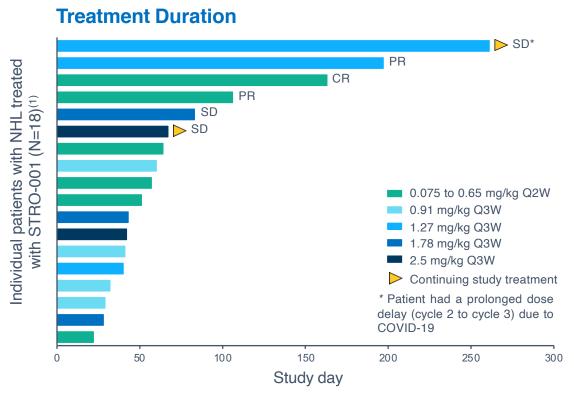
As of October 2021, the last reported doses levels were of 5.0 mg/kg in the multiple myeloma (MM) cohort and 4.2 mg/kg in the non-Hodgkin's lymphoma (NHL) cohort.

⁽¹⁾ DLT disclosed in 2019, patient with bulky lymphadenopathy and concurrent DVT receiving 0.91 mg/kg Q3W

ASH 2020 Update in NHL Cohort

Heavily pre-treated patient population with 5 median lines of prior therapies

Baseline Characteristic	(N=21)
Age, median (range), years	64.5 (21–82)
Time from diagnosis, median (range), years	6.0 (1.0–29.8)
NHL subtype, n (%)	21 (100)
DLBCL	7 (33)
Follicular lymphoma	7 (33)
MCL	2 (10)
Marginal zone lymphoma	2 (10)
Burkitt's Lymphoma	1 (5)
Composite DLBCL/FL	1 (5)
Composite DLBCL/CLL	1 (5)
Number of prior therapies, median (range)	5 (1-12)
Prior therapies, n (%)	
Autologous stem cell transplant	2 (10)
Unrelated allogeneic stem cell transplant	1 (5)
CAR-T therapy	3 (14)


TEAEs by Grade,	Patients With ≥1 Event, n (%)				
Occurring in ≥15%	Grade 1	Grade 2	Grade 3	Grade 4	
Nausea	5 (23.8)	4 (19.0)	0	0	
Fatigue	4 (19.0)	3 (14.3)	0	0	
Chills	7 (33.3)	0	0	0	
Anemia	3 (14.3)	2 (9.5)	1 (4.8)	0	
Headache	2 (9.5)	4 (19.0)	0	0	
Dyspnea	1 (4.8)	3 (14.3)	1 (4.8)	0	
Abdominal pain	4 (19.0)	1 (4.8)	0	0	
Infusion related reaction	1 (4.8)	3 (14.3)	0	0	
Vomiting	2 (9.5)	2 (9.5)	0	0	
Decreased appetite	3 (14.3)	1 (4.8)	0	0	
Pyrexia	3 (14.3)	1 (4.8)	0	0	

Note: Data as of October 30, 2020 from ASH 2020

Encouraging Interim Treatment Duration and Responses

Partial responses in two DLBCL patients who had progressed on CAR-T

Best Response	Patients, n	STRO-001 Dose	NHL subtype
CR	1	0.075 mg/kg	DLBCL
PR	2	0.65, 1.27 mg/kg	DLBCL
SD	3	1.27, 1.78, 2.5 mg/kg	Marginal Zone and Follicular
PD	12	Multiple	

(1) 18 patients are evaluable for response as of October 30, 2020

Note: Data as of October 30, 2020 from ASH 2020

Responses to STRO-001

Dose Level, mg/kg	Demographics and Diagnosis	Prior Therapies	Best Responses	Doses Received	Duration of Treatment
0.075	82-year-old man with Stage III DLBCL, non-GC type diagnosed in 2015	 R-CHOP-R, Rituximab/lenalidomide Bendamustine/rituximab Obinituzumab + gemcitabine + oxaliplatin 	CR after 2 cycles (4 doses)	12	24 Weeks (PD after 12 doses)
0.65	64-year old man diagnosed with double-hit Stage IV DLBCL in August 2017	 R-CHOP x 1 and EPOCH X 6 (2017) RICE with IT prophylaxis (2017/2018) Rituximab and XRT (2018) Rituximab, gemcitabine + oxaliplatin with radiotherapy (2018) Axicabtagene ciloleucel (CAR-T) (May 2018) Rituximab and lenalidomide (Nov 2018) 	PR at cycle 3	8	15 weeks (PD after 8 doses)
1.27	68-year old woman stage IV extranodal DLBCL, non-GC diagnosed in Feb 2018	 R-CHOP RICE x 2 DHAP x 2 CAR-T (May 2019) Lenalidomide (Nov 2019) 	PR at cycle 3	10	27 weeks ongoing (PD at cycle 10)
1.27	51-year old woman, stage III marginal zone lymphoma diagnosed in May 2017	Obinutuzumab	SD	6	39 weeks ongoing
1.78	36-year old man with stage IIIA follicular lymphoma diagnosed in June 2014	 Flt3L-vaccine immunotherapy Rituximab Pneumococcal conjugate vaccine immunotherapy polyCLC (TLR-3 agonist) – immunotherapy Pembrolizumab 	SD	4	12 weeks (PD after Cycle 4)
2.50	74-year old man with IV follicular lymphoma	Reituximab/fludarabine/CytoxanIfosfamide/carboplatin, etoposideAuto SCT	SD	3	9 weeks on active treatment

Financial Overview

Well-capitalized through cash and other financial sources

\$254.2M

in cash, cash equivalents & marketable securities as of Sept. 30, 2021

Projected cash runway into 2H 2023,

based on current business plans and assumptions

~1.6M shares of Vaxcyte

(Nasdaq: PCVX) not included in the above reported cash

Funding received from our collaborators of ~\$434M through Sept. 30, 2021

Driving Value Through Advancing Programs

Prioritizing expanding the STRO-002 franchise

Program	Indication	Milestone / Achievement	Timing	
		Near final dose-escalation data	ASCO 2021	V
	Ovarian Cancer	Complete dose-expansion enrollment	November 2021	✓
		Initial dose-expansion data expected	2H 2021	
STRO-002 FolRa ADC		EOP1/2 FDA meeting for STRO-002-GM1	1H 2022	
	Ovarian Cancer (Combo)	Initiate combo study with bev	2H 2021	
	Endometrial Cancer	Initiate endometrial study	November 2021	✓
	NSCLC	Preclinical work to support IND plans	2022	
STRO-001	NHL & MM	Continue dose-escalation to achieve RP2D	2022	
CD74 ADC	NHL, MM, AML	Support BioNova in Greater China	2022	
STRO-003	Cancer	Present preclinical data and IND plans	2022	

Experienced Leadership Team

William Newell, JD
Chief Executive Officer and
Member of the Board of
Directors

Trevor Hallam, PhDPresident of Research and Chief Scientific Officer

Arturo Molina, MD, MS, FACP Chief Medical Officer

Ed Albini, MBAChief Financial Officer

Jane Chung, RPh Chief Commercial Officer

Shabbir Anik, PhDChief Technical Operations Officer

Linda FitzpatrickChief People and
Communications Officer

Nicki Vasquez, PhDChief Portfolio Strategy and Alliance Officer

