Treatment of Ovarian & Endometrial Cancer with the Novel Folate Receptor-α-targeting Antibody Drug Conjugate, STRO-002

World ADC Conference March 2021

Arturo Molina Chief Medical Officer

Sutro Technology and Pipeline

Sutro Technology Has Broad Oncology Applications Novel and precise design to drive adaptive and protective immune responses

	Bispecific Antibody	Conjugated Antibody			Cytokine Derivative
Modality	Immune Cell Engager	ADC or ISAC	iADC	Bispecific ADC	Prodrug Cytokine Derivative
Target	Tumor or Stromal Antigen	Tumor Antigen	Tumor Antigen	Dual Tumor Antigens	Tumor Selective Mask
Structure			**	**	cytokine Releasable mask
Drug Properties	Optimized format and affinity Improved specificity for optimized therapeutic window	ISAC: Immune- stimulating ADC: targeting novel payloads	Site-specific dual drug conjugate with complementary modalities (TME modulator +/- immune modulator)	Enhanced tumor targeting of cytotoxic payloads	Prodrug cytokine targeting functional cytokine to tumor

Cell-Free Platform is a Proven IND Engine

Four product candidates in the clinic and other late-stage discovery programs in various modalities

Program	Discovery	Preclinical	Phase 1/1b	Phase 2/3	Commercial Rights
STRO-002 FolRα-Targeting ADC	Ovarian and End				
STRO-001 CD74-Targeting ADC	Lymphomas: DL Multiple Myelom		SUTR:		
Multiple Oncology Programs including iADCs	Oncology		Worldwide Rights		
CC-99712 BCMA-Targeting ADC	Multiple Myelom		t^{lll} Bristol Myers Squibb [™]		
M1231 MUC1-EGFR Bispecific ADC	NSCLC & Esophageal Cancer				EMD (1)
Cytokine Derivatives	Oncology & Auto				
Cytokine Derivatives	Oncology				
VAX-24 24-Valent Pneumococcal Conjugate Vaccine	Invasive Pneumo	ococcal Disease			Vaxcyte (2)

(1) EMD Serono is the biopharmaceutical business of Merck KGaA, Darmstadt Germany in the US

(2) Sutro owns 4% royalties on VAX-24

STRO-002 Background

Potential Best-in-Class ADC for Ovarian and Endometrial Cancers FolRα targeting ADC with potentially dual mechanism of action

STRO-002 is a homogeneous **antibody drug conjugate** (ADC) with a **drug-antibody ratio** (DAR) of 4, targeting folate-receptor alpha (FoIRα):

FolRα is overexpressed in certain cancers including ovarian cancer and endometrial cancer

Precisely positioned **non-natural amino acids**, p-azidomethyl-L-phenylalanine, at positions Y180 and F404 on the heavy chain

3 Stal

Stable protease-cleavable linkers, with rapid clearance of toxic catabolite after release and cell killing

Warhead is hemiasterlin-derivative⁽¹⁾ with potentially **dual** mechanism against the tumor – tubulin-inhibitor cytotoxin, less sensitive to P-gp transport and provides immunogenic response upon cell death⁽²⁾

(1) Sutro-proprietary tubulin-targeting 3-aminophenol hemiasterlin warhead, SC209(2) Based on STRO-002 pre-clinical models showing immune stimulation at site of tumor upon cell death

STRO-002 Mechanism of Action

Tumor Cell Delivered Cytotoxicity and Stimulation of Innate Immune Cell Activation

STRO-002 in Ovarian Cancer

Potent preclinical anti-tumor activity

Single Dose of 10 mg/kg STRO-002 Resulted in Tumor Regression

Source: Sutro Biopharma report, Evaluation of STRO-002 Efficacy in the Treatment of Established and Large OVCAR-3 Human Ovarian Xenograft Tumors, TR-TPPD-0116-V1.0, dated December 20, 2017.

STRO-002 in Ovarian Cancer Design features facilitate improved potency and specificity

STRO-002 Demonstrates More Potent Cell Killing Compared to the Benchmark and Has Minimal Off-Target Activity

Source: Sutro Biopharma report, STRO-002 Cell Killing Compared to SP8435, TR-TPPD-0021-V1.0, dated May 18, 2018.

STRO-002: A Potentially Superior FolRα ADC Improved stability can widen therapeutic index

Mouse Tumor Model – Free Warhead in Tumor vs. Blood After Dosing

No Evidence of STRO-002 Free Warhead Circulating in the Blood Post Dosing No evidence of Free Warhead Accumulation in FolR α Negative Tumors

Source: Sutro Biopharma report, In Vivo Catabolite Profiling for SP8193 and SP8435 in Tumor and Plasma, TR-PHRM-0036-V1.1, dated January 8, 2018.

STRO-002 Shows Significant TGI Activity in Endometrial Cancer PDX Models

FolRa Expression	Number of Models with Signficant TGI	Percent Response
Negative	0/3	0%
FolRa + (Low)	2/6	33%
FolRα ++ (Medium)	3/5	60%
FolRa +++ (High)	4/6	67%
Total FolRa Positive	9/17	53%

Established PDX tumors (~100-200 mm³) were treated weekly treatment with 10 mg/kg STRO-002

- STRO-002 was significantly efficacious in 53% of the FolRα positive models
- Significant TGI ranged from 53% to > 100 % (indicating regression below the tumor size at the start of treatment)
- Correlation observed between STRO-002 response and FolRα expression levels. Though high FolRα models showed highest response rates, some models with low and medium FolRα also exhibited good activity.

STRO-002 GM1 Ovarian Dose Escalation Data

STRO-002 GM1 Phase 1 Two-Part Design

Dose-escalation has been completed and data was presented December 2020

Study Update:

- Enrollment completed August 2020
- Company provided updated data on December 3, 2020, as of October 30, 2020 cutoff

Note: Data as of October 30, 2020 and presented at Company Event on December 3, 2020

Baseline Characteristic	All Patients N=39
Median age	61 years (range: 48–79)
Median time since diagnosis	3.9 years (range: 0.6–17.0)
Median number of prior lines of therapy	6 lines (range: 2–11)
Previous therapies, n	
Platinum	39 (100%)
≥ 3 prior platinum regimens	18 (46%)
Taxanes	38 (97%)
Bevacizumab	32 (82%)
PARP inhibitors	23 (59%)
Checkpoint inhibitors	8 (21%)
Experimental therapy	14 (36%)

STRO-002 Was Generally Well Tolerated 86% of TEAEs remain Grade 1-2 and no observed ocular toxicity signal

Doso Levels in Dose-Escalation

DOSE Levels III DOSE-LScalation							
Dose Levels (Q3W)	All Patients (N=39)	All Safety Evaluable Patients	Grade 1 N (%)	Grade 2 N (%)	Grade 3 N (%)	Grade 4 N (%)	Overall (N=39) N (%)
		Fatigue	8 (21)	17 (44)	4 (10)	0	29 (74)
0.5 mg/kg, 1.0 mg/kg, and 1.8 mg/kg	5 (13%)	Nausea	15 (39)	10 (26)	0	0	25 (64)
		Constipation	12 (31)	12 (31)	0	0	24 (62)
2.9 mg/kg	3 (8%)	Neutropenia	0	1 (3)	9 (23)	13 (33)	23 (59)
	5 (13%)	Arthralgia	8 (21)	7 (18)	6 (15)	0	21 (54)
4.3 mg/kg		Decreased appetite	10 (26)	10 (26)	0	0	20 (51)
		Neuropathy	3 (8)	12 (31)	3 (8)	0	18 (46)
5.2 mg/kg	12 (31%)	Abdominal pain	7 (18)	5 (13)	3 (8)	0	15 (39)
		AST increased	10 (26)	2 (5)	1 (3)	0	13 (33)
5.6 mg/kg	3 (8%)	Dizziness	10 (26)	3 (8)	0	0	13 (33)
		Vomiting	8 (21)	5 (13)	0	0	13 (33)
6.0 mg/kg ⁽¹⁾	10 (26%)	Diarrhea	8 (21)	3 (8)	1 (3)	0	12 (31)
		Headache	7 (18)	3 (8)	0	0	10 (26)
$6.4 \text{ mg/kg}^{(1)}$	1 (3%)	Insomnia	6 (15)	4 (10)	0	0	10 (26)
		Pyrexia	8 (21)	2 (5)	0	0	10 (26)

Common TEAEs > 25% By Grade $^{(2)}$

(1) MTD was not reached; DLTs occurred in 2 patients: Grade 2 neuropathy/Grade 3 arthralgia at 6.0 mg/kg and Grade 3 bone pain at 6.4 mg/kg

(2) Not included in table are two Grade 5 events, both previously reported and unrelated to study drug by investigator assessment: death not otherwise specified and acute GI bleed Note: Data as of October 30, 2020 and presented at Company Event on December 3, 2020

Tumor Reduction Observed in Majority of Patients 10 patients met criteria for response

Maximum Change ⁽¹⁾ in Tumor Target Lesions

(1) Maximum % change from baseline in sum of longest diameter in evaluable patients treated with STRO-002 at ≥ 2.9 mg/kg Q3W, N=31

(2) CR in patient treated at 2.9 mg/kg with resolution of peritoneal disease

Note: Data as of October 30, 2020 and presented at Company Event on December 3, 2020

Partial Response in Patient with Platinum-resistant OC PR with 74% tumor reduction

57-year-old woman with platinum resistant ovarian cancer progressing after 4 prior regimens received STRO-002 at 5.2 mg/kg Q3W and remains on study treatment

Tumor Regression and Control Over Time

Deepening of responses over time and others with disease control remaining on study

⁽¹⁾ CR in patient treated at 2.9 mg/kg with resolution of peritoneal disease Note: Data as of October 30, 2020 and presented at Company Event on December 3, 2020

Clinical Benefit Seen in Heavily Pre-Treated Patient Population Disease control rate of 74% at 12 weeks in RECIST-evaluable population

(1) Duration calculated as date of PD or time from first dose to last dose given (including 4 patients deriving clinical benefit post progression per investigator assessment) Note: Data as of October 30, 2020 and presented at Company Event on December 3, 2020

FolRα Expression by Immunohistochemistry⁽¹⁾

In emerging data, responses and anti-tumor activity observed across various FolRα expression levels

FOLR1 PS2+ Score:	Weak/Absent Expression	Moderate Expression	High Expression
PR	1	1	0
PRu	0	0	1
SD	3	1	4
PD	2	0	0

(1) Assessed by Ventana FOLR1 expression assay based on available archival tissue from dose-escalation patients Note: Data as of October 30, 2020 and presented at Company Event on December 3, 2020

Key Findings in Dose-Escalation Study STRO-002 is a potentially important option for patients with limited treatment alternatives

STRO-002 provided clinical benefit in an all- comers, late line patient population	86% of the AEs were Grade 1-2 and corticosteroid eyedrops were not required	Wide therapeutic index allows for for long-term dosing	Improved outcomes in responses and DCR as data matures	Antitumor activity and disease control across various FolRα expression levels
Patients experienced a median of 6 prior lines of therapy, including SOC, bevacizumab, PARPi, CPI, and clinical trials	Neutropenia generally reversed within a week, without G-CSF. Peripheral neuropathy/arthralgia managed with dose reduction/delay without evidence of compromised efficacy	Encouraging product profile with STRO-002 generally well tolerated and MTD was not reached. Antitumor activity and responses were observed in multiple dose levels	74% of the patients had disease control ≥12 weeks, which is clinically relevant in this population	Suggests potential for STRO-002 to provide clinical benefit across a broad patient population.

STRO-002 GM1 Dose Expansion

Path Forward for STRO-002 Clinical Development Next steps for moving towards registration-directed study

Part 2: Dose-Expansion Cohorts (Ovarian & Endometrial) First patient for Determine optimal efficacious ovarian cohort dose that is well-tolerated and dosed **All-Comers Ovarian Cancer** N≈20 **STRO-002** maintains dose intensity January 2021 4.3 mg/kg Tissue required prior to enrollment · Front line platinum-refractory excluded Study will begin with **All** • 1-3 prior regimens for platinum-resistant Plan to target • 2-3 prior regimens for platinum-sensitive **Comers** and ongoing ≈35 sites in • Baseline peripheral neuropathy grade ≥ 2 **STRO-002** N≈20 5.2 mg/kg excluded expression analysis will **US & Europe** inform subsequent enrichment strategy Anticipated FolRa-Selected preliminary data **Endometrial Cancer** N≈15-40 **STRO-002** in ovarian cancer 4.3-5.2 mg/kg Relapsed/refractory disease Characterize efficacy and safety No standard of care treatment 2H 2021 profile in less heavily pre-treated population Anticipated **Key Endpoints:** to inform registration-EOP1/2 FDA Objective Response Rate, Safety, PK Profile, Duration of Response, Progression Free Survival, Overall Survival, CA-125 meeting in 2H directed study Responses 2021

Thank You

Arturo Molina amolina@sutrobio.com

Headquarters

310 Utah Ave. Suite 150 South San Francisco, CA 94080 Phone: 650.392.8412 Fax: 650.872.8924 Web: www.sutrobio.com **Manufacturing Plant** 870 Industrial Road San Carlos, CA 94070

Additional Offices

240 E. Grand Ave South San Francisco, CA 94080 SUTR: BIOPHARMA