

Preclinical Development of STRO-003, a ROR1 Targeted Antibody-Drug Conjugate

14th Annual World ADC San Diego 2023

STRO-003: A Novel ROR1 Targeted ADC is Designed for Purpose

Ø

ROR1 biology makes it an attractive ADC target

ROR1: **Role in cancer progression** and expressed in tumor and tumorinitiating cells

Low potential for on-target toxicity due to **restricted normal tissue expression and clinical safety validation**

Expansive indication space in oncology

Clinical validation of ROR1 in hematological malignancies*

and **broad potential opportunity in solid tumors**, including large indications such as NSCLC and breast cancer

* With a tubulin inhibitor ADC

alint

Potential for attractive clinical performance

Low copy number and heterogeneous expression of ROR1 antigen in solid tumors favors potent ADCs with bystander activity and great tolerability

STRO-003's optimized linker design and payload selection—along with precise positioning of 8 linker-payloads per antibody—provides **potent efficacy** in low antigen expressing solid human tumors (PDX) and is very well tolerated in preclinical studies

Our Innovative Design: STRO-003 is a Novel Optimized ROR1 ADC, Featuring TOPO-1 Inhibitors Linked with β-Glucuronidase Cleavable Linkers, DAR 8

STRO-003 is a single homogeneous antibody drug conjugate (ADC) with a drug-antibody ratio (DAR) of 8, targeting ROR1 tumor antigen

Targeted ROR1 epitope is overexpressed in diverse cancers including hematological and solid tumor indications

Precisely positioned non-natural amino acids, p-azidomethyl-L-phenylalanine (pAMF), **to enable DAR8** and optimal conjugation sites for enhanced performance and stability

Stable β-glucuronidase cleavable linkers demonstrate tumor specificity and encouraging preclinical tolerability. Preclinical data has shown marked improvement over CatB linkers regarding neutropenia and lung tolerability issues seen with tubulin and TOPO-1 inhibitors in the clinic

Exatecan warhead inhibits TOPO-1 causing DNA disruption. It elicits potent tumor cell killing, bystander activity and immunogenic cell death

STRO-003 Binds With High Affinity To Human, Cynomolgus, and Rodent ROR1 and Shows Potent ROR1-Dependent Tumor Killing

In vitro Cell Binding

				-		(%)
CHO-hROR1		HEK293-mROR1		HEK293-rROR1		oility .
Bmax	Kd (nM)	Bmax	Kd (nM)	Bmax	Kd (nM)	ell viab
22446	0.32	16117	3.7	20818	2.4	ive ce

In vitro Cell Killing

- STRO-003 binds with high affinity to human, cynomolgus, and rodent ROR1 with a Kd in the low nM range
- STRO-003 demonstrates potent tumor cell killing of ROR1 positive cells in vitro
- STRO-003 cell killing is ROR1-dependent and can be blocked with a competing anti-ROR1 antibody

ROR1 Is Widely Expressed Across Hematological Malignancies

ROR1 shows homogenous expression across hematological malignancies

Daneshmanesh et al, Leukemia & Lymphoma (2013)

B-CLL ROR1 cell surface expression based on antibody binding capacity (ABC) is 2,773-7,090 molecules/cell Baskar et al, Clin Cancer Res (2008) The MCL cell lines JeKo-1 and Mino show ROR1 expression comparable to patient samples

JeKo-1 and Mino ROR1 cell surface expression based on antibody binding capacity (ABC):

JeKo-1	19,683		
Mino	17,217		

STRO-003 Shows Anti-tumor Activity in Localized and Disseminated Xenograft Models Of Mantel Cell Lymphoma (MCL) with Moderate ROR1 expression

- STRO-003 demonstrates anti-tumor activity in a subcutaneous xenograft model of MCL
- STRO-003 provides a moderate but significant survival benefit in a disseminated xenograft model of MCL
- STRO-003 shows comparable activity to a ROR1 targeted DAR4 MMAE ADC

ROR1 Is Expressed In Solid Tumors, Including NSCLC And Triple Negative Breast Cancer (TNBC)

Lung cancer

Bhalakrishnan et al., *Clin Cancer Res* (2017)

Breast cancer

STRO-003 Shows Anti-tumor Activity in Mouse Xenograft Models of Lung and Breast Cancer with Moderate ROR1 Expression

NSCLC CDX

TNBC CDX

STRO-003 Demonstrates Complete Regression of Human NSCLC PDX Expressing Low and Heterogeneous ROR1 Antigen Levels

NON CONFIDENTIAL

STRO-003 Demonstrates Complete Regression of Human NSCLC PDX Expressing Low and Heterogeneous ROR1 Antigen Levels

% Best response from baseline

 STRO-003 showed maximum tumor regression of >50% (PR/CR) in 68% of ROR1 positive PDX models expressing low and heterogeneous antigen levels

Exatecan MoA Provides a Strong Rationale for Combination with DNA Damage Repair Inhibitors Due to the Potential for Synthetic Lethality

- Cancer cells are often deficient in one or more DNA repair pathways, making them more susceptible to disruption of specific pathways
- Exatecan traps TOP1cc on DNA. Subsequent collisions with replication machinery results in DNA damage
- PARP1 can initiate removal of stalled TOP1cc and plays a key role in SSB repair and NHEJ for DSB break
- Inhibition of Topo1 by exatecan and inhibition of PARP can lead to synthetic lethality in otherwise DNA repair proficient cells

STRO-003 in Combination With Olaparib Significantly Improves Efficacy in MDA-MB-231 Tumors Compared to Single Agent Treatment

- PARP inhibitors olaparib and talazoparib are FDA-approved for the treatment of HER2- metastatic breast cancer in patients with BRCA1 or BRCA2 gene mutations
- STRO-003 plus olaparib combination treatment significantly inhibited tumor growth in large MDA-MB-231 tumors and showed significant improvement in tumor growth inhibition compared to single agent treatment
- No test article exhibited substantial toxicity.

STRO-003 Demonstrates Anti-Tumor Activity in BRCA WT Triple Negative Breast Cancer PDX Models with Moderate ROR1 expression

- STRO-003 shows anti-tumor activity in both BRCA WT and BRCA mut PDX models of TNBC
- STRO-003 plus olaparib combination treatment shows improved anti-tumor activity in BRCA WT PDX models of TNBC
- No test article exhibited substantial toxicity.

STRO-003 Combination Therapy With Olaparib Improves Anti-Tumor Activity in Triple Negative Breast Cancer PDX Models with Low and Moderate ROR1 expression

- STRO-003 induces tumor regression in PDX models of TNBC as single agent
- STRO-003 plus olaparib combination treatment shows improved anti-tumor activity in models of TNBC
- No test article exhibited substantial toxicity.

STRO-003 Combination Therapy Prolongs Anti-Tumor Response in Triple Negative Breast Cancer PDX Models with Low and Moderate ROR1 expression

- STRO-003 induces tumor regression in a subset of PDX models of TNBC as single agent
- STRO-003 plus olaparib combination treatment shows prolonged tumor regression and/or stasis
- No test article exhibited substantial toxicity.

STRO-003 Shows Dose Proportional PK in NHP, Stable ADC and Low Levels Of Free Catabolite In Circulation

- Antibody and ADC PK exhibits low (7 11 mL/d/kg) clearance, and half-lives were between 4 and 10 days. Plasma concentration time profiles follow a 2-compartment model.
- The in vivo stability of ADC is demonstrated with the superimposed plasma concentration time profiles of both ADC and total Antibody (TAB).
- Free catabolite plasma concentrations are in the sub and low nM range, and at least 100-fold lower than TAB or ADC. Catabolite elimination profiles are generally in parallel with TAB and ADC not impacted by ADA, and similar on D1 and D22.
- ADA impacts the elimination of TAB/ADC at 14 mg/kg dose on D22 in female, but not at other ADA positive doses.

STRO-003 Demonstrated a Wide Safety Window in Multiple Cross-Reactive Species

STRO-003 is cross-reactive and well tolerated in rat at high doses

• No observed neutropenia, no elevation of liver enzymes at high doses (60 mg/kg)

STRO-003 is cross-reactive and well tolerated in a multi-dose non-GLP NHP study

• No observed neutropenia or thrombocytopenia, well tolerated up to 45 mg/kg, no changes observed in WBC

No lung toxicities observed at 45 mg/kg STRO-003 in NHPs;

- In the same preclinical NHP study, a ROR1 ADC with Cathepsin B linker exatecan ADC generated lung findings consistent with developing pneumonitis (and ILD) at 45 mg/kg
- Other CatB-linker exatecan ADCs, are associated with significant rates of clinical pneumonitis/ILD
- Improved tolerability with STRO-003 might be driven by use of new β-glucuronidase linker

STRO-003 Enables a Broad Clinical Development Strategy Through Efficient Killing of ROR1-Expressing Tumors and a Favorable Safety Profile

Expansive indication space

- ROR1 is a clinically validated target in hematological indications.
- Preclinical in vitro and in vivo data support application in hematological cancers and broad solid tumors, including NSCLC and breast cancer

STRO-003: Designed for superior clinical performance

- Optimal molecule to deliver efficient tumor killing with every antigen binding and internalization event
- High potency DNA targeting TOPO-1 inhibitor payload with compelling clinical validation
- Optimized novel linker design with improved preclinical safety compared to a CatB linker; no lung toxicities or neutropenia observed
- High DAR8, clinically precedented, but now with optimized conjugation positioning, to maximize payload delivery to tumor cell and improve potential efficacy in solid tumors

Thank you!

