

Discovery of Novel Linker Payloads for Site-Specific ADCs with Improved Efficacy and Therapeutic Index

Krishna Bajjuri Sr Director, Chemistry Sutro Biopharma

14th Annual WADC, San Diego 2023

- Brief overview of the diverse classes of Sutro's linker payloads platform employed in the discovery and development of DAR4/8 site-specific ADCs
- Discovery of novel tumor-selective linkers and payloads explored in enhancing the efficacy and therapeutic index of α-ROR1 ADC (STRO-003)
- Highlighting Sutro's Site-Specific TAA ADCs utilizing the novel hydrophilic β-glucuronidase cleavable Exatecan linker payload

Expanding Sutro's Various Classes of Payload Platform for ADCs

- Used on two Sutro clinical programs
- Tubulin inhibitor
- Can be used with cleavable and noncleavable linkers
- Extensive clinical track record
- IC₅₀: 22 64 nM

Hemiasterlin Analog

- Sutro novel payload asset used in two clinical programs
- Tubulin inhibitor
- Reduced P-gp efflux liability- best in class within tubulin binders
- Induces strong ICD
- IC₅₀: 0.3 4.2 nM

R = H (Exatecan) R = Gly (Gly-Exatecan)

Exatecan/Gly-Exatecan

- Topo1 Inhibitor
- Close analog to Daiichi DXd-ADC
- More potent Topo1 inhibition and cell killing than CPT-11, SN-38, Topotecan
- Multiple novel linker payload for optimized TI's
- Not a P-gp substrate
- IC₅₀: 0.32 12nM/3.8-44
 nM

PNU anthracycline class

- Topo1-inhibitor, multiple effects on DNA including intercalation and alkylation
- High potency, no need for high DAR
- Multiple stable linkers in evaluation
- Not a P-gp substrate
- strong ICD inducers, best in class activators of DCs
- IC₅₀: 0.01 0.05 nM

Hemiasterlins: From Natural Product to ADC Payload

hemiasterella minor

- Co-crystallization of SC209 is binding to the vinca-site of two α,β-tubulin interdimer interface
 - Sutro's tubulin inhibitor class payload for ADC programs
 - Low to sub nM cell killing activity across various cancer cells
 - Active against P-gp overexpressing cells
 - Induced strong ICD, characterized by secretion of damageassociated molecular patterns (DAMPs)
 - vc-SC209 (SC239) optimized LP utilized for two DAR4 ADC clinical programs

CPT Derivatives and DNA Targeting Cytotoxins Explored as ADCs

Legumain (LGMN) Expression in Human Tumors for ADC Linker

Legumain expression in normal human tissues
 and tumors

- The Cys protease Legumain, also known as Asparaginyl endopeptidase, specifically cleaves Asn amide bonds at acidic pH
- Legumain is overexpressed in the majority of human solid tumors
- This protease is known to be upregulated in multiple cancer types, actively in cancer invasion and metastasis

Carcinoma type	Number analyzed	Number positive	Percentage positive	Degree of positivity
Breast carcinoma	43	43	100%	+++
Colon carcinoma	34	32	95%	+++
Lung carcinoma	24	14	58%	+++
Prostate carcinoma	56	42	75%	++++
Ovarian carcinoma	23	17	73%	++
Central nervous system tumors	8	8	100%	++
Lymphoma	14	8	57%	+
Melanoma	12	5	41%	+

Table 1 Legumain detection in human solid tumors

Cancer Res. 2003 Jun 1;63(11):2957-64

Legumain Protease Cleavable Hemiasterlin and Topo1i LP's for ADCs

β-Glucuronidase (β-Glu) Overview

- β-Glu is overexpressed in the majority of known solid and blood cancers
- β-Glu is only active and present in cancer cell lysosomes and tumor necrotic regions
- Active only at acidic pH
- Non peptide based, stable to hNE & or to other serine/cysteine proteases
- Minimal expression in normal cells, not active at physiological pH
- Intrinsic hydrophilicity due to the sugar linker
- Serum stable linker

Design of Novel Proprietary Tumor Specific β-Glucuronide Linker for ADCs

β-Glucuronidase Enzyme Release of Optimized Hydrophilic β-Glu Linker Payloads

 β -Glu enzyme cleaves novel hydrophilic β -Glu cleavable Exatecan (SC3417) and β -Glu cleavable Hemiasterlin (SC3425) LPs

 The Optimized β-Glu Exatecan (SC3417) and β-Glu Hemiasterlin (SC3425) LPs exhibited comparable corresponding payload release concentrations of SC3386 and SC209

human Neutrophil Elastase (hNE) Stability of Various Linker Payloads

hNE Cleavage of Different pAMF/Cys Quenched Linker Payloads

- hNE cleavage was observed for SC572Cys (vcMMAE) ~ SC3418pAMF (cathepsin cleavable Exatecan LP)>> SC3420pAMF (LGMN cleavable Exatecan LP)
- No release is observed for SC3417pAMF (β-Glu cleavable Exatecan LP) and is stable in the hNE assay for 2h

ROR1 Background

Schematic domain structure of ROR1

- Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a cellsurface, onco-fetal protein whose expression is correlated with oncogenic properties such as enhanced proliferation, survival, and chemoresistance
- ROR1 expression is highly associated with epithelialmesenchymal transition EMT genes and the silencing of ROR1 reduces the ability of MDA-MB-231 cells
- Tyrosine Kinase ROR1 as an attractive Target for Anti-Cancer Therapies

- Zhao et al. Frontiers in oncology May 2021
- Nicholas et al. Protein Cell 2014, 5(7):496–502

ROR1 Expression Across Various Solid Tumors

- ROR1 is a favorable target for an ADC due to its low expression in normal tissues
- As well as it's prevalence in solid tumors and B cell malignancies, including CLL, DLBCL, MCL, TNBC, NSCLC and ovarian cancer
- ROR1 expression is correlated with poor prognosis in different cancers, for e.g., TNBC and CRC
 - Zhang, et al. Am J Pathol. 2012; 1903-10
 - Balakrishnan, et al. Clin Cancer Rese 2017, 3061-3071
 - Zheng, et al Sci Rep. 2016 Nov 10;6:36447; Zhou et al, Oncotarget. 2017 May 16;8(20):32864-32872

a-ROR1 nnAA pAMF Labeled Ab Discovered Using Sutro's CF Platform Technology

Schematic representation of cell-free α -ROR1 Ab synthesis for homogeneous ROR1 targeting ADC

Design/Optimization of Novel Linker Payload for α-ROR1 ADC

- ROR1 is expressed on multiple hematologic and solid tumors but not on normal tissues
- Heterogenous expression, low receptor copy number (ranging between 50,000-150,000)
- Payload selection Tubulin vs DNA targeting
- Low/not a substrate for drug efflux from MDPR/BCRP1 transporters
- Improved passive permeability (P_{app}) for better bystander affect
- Moderate potency payload; high drug loading ADCs (DAR8) to drive the efficacy and modulate the PK, safety
- Explored different drugs and tumor specific release mechanism-based linkers, to minimize Cmax the free payload in tissues and maximize target exposure to ADC
- Better physicochemical properties of ADC

Payload Selection for α-ROR1 ADC

In-vitro cell killing on ROR1 expressing tumor cells of different classes of payloads

In-vitro cell killing on P-gp overexpressing MES-SA/MX2 tumor cells of tubulin/DNA targeting payloads

In vitro Potencies of a-ROR1 DAR8 ADCs with Different Linker/Payloads

PK Summary of α -ROR1 DAR8 ADCs with Different Linker/Payloads in Non-Tumor Bearing Mice

 SC3417/SC3418/SC3420 with different cleavable linker based Exatecan DAR8 α-ROR1ADCs showed good PK properties when compared to the benchmark control LP (SC3403) as DAR8 ADC.

a-ROR1 DAR8 ADCs with Various Linker/Payloads in MDA-MB-231 Breast Cancer Model with Moderate ROR1 Expression

Tumor Growth Curves

- Vehicle

- 5 mg/kg SP11068 (VLS-101 surrogate)
- 5 mg/kg SP10873 (DAR8 hemiasterlin SC239)
- 5 mg/kg SP10979 (DAR8 exatecan SC3417)
- ✤ 5 mg/kg SP10980 (DAR8 exatecan SC3418)
- ← 5 mg/kg SP10982 (DAR8 exatecan SC3420)

LP SC#	Description	Dose (qw x4)	% TGI (Day 42 or 43)
SC3417	DAR8 hydrophilic β-glu Exatecan Linker Payload	5 mg/kg	106%
SC3418	DAR8 CatB (tripeptide sequence) cleavable Exatecan Linker Payload	5 mg/kg	74%
SC3420	DAR8 LGMN (tripeptide sequence) Exatecan Linker Payload	5 mg/kg	75%
SC239	DAR8 CatB cleavable Hemiasterlin Linker Payload	5 mg/kg	23%
SC572	DAR4 CatB MMAE (VLS-101 Linker-Payload)	5 mg/kg	53%
	Vehicle		

• DAR8 β-Glu Exatecan conjugate outperformed compared to other α-ROR1 ADCs utilizing different Linker/Payloads

α-ROR1 DAR8 SP11321 (β-glu Exatecan) ADC Shows Greater Anti-Tumor Activity in High and Low ROR1 Expressing NSCLC PDX Models than SP11322 ADC

a-ROR1 DAR8 SP11321 was Stable in Circulation and Well Tolerated in NHP up to 45 mg/kg

- Non-human primates were dosed with SP11321 every three weeks in a repeat dose toxicity (Q3wx2 at 10, 20, 45 mpk) and toxicokinetic study
- SP11321 was well-tolerated in a multi-dose non-GLP NHP up to 45 mg/kg, the highest dose tested
- SP11321 was stable in circulation with superimposable ADC and total antibody plasma concentrations
- Plasma concentrations of released Exatecan payload (SC3386) were in the sub to low nM range, and at least 100-fold lower than TAB or ADC

a-ROR1 DAR8 SP11321 Demonstrated a Wide Safety Window in Non-Human Primates

- α-ROR1 DAR8 SP11321 (β-glu Exatecan Linker Payload) was well tolerated in a multi-dose non-GLP NHP study up to 45 mg/kg
- No observed neutropenia or thrombocytopenia, no changes observed in WBCs

Additionally, no lung toxicities observed at 45 mg/kg SP11321 in NHPs

- No microscopic findings of toxicity were observed in the histopathology of animals dosed with SP11321
- In this NHP preclinical study, α-ROR1 DAR8 SP11322 (CatB cleavable Linker Exatecan SC3418) ADCs generated lung findings consistent with developing pneumonitis (and ILD) at 45 mg/kg

SP11321 a-ROR1 DAR8 ADC

SP11321 is homogeneous α-ROR1 DAR8 ADC for the treatment of ROR1expressing solid/hematological carcinomas

- High affinity ROR1 specific Ab; incorporating eight paraazidomethyl-phenyl alanine (pAMF) nnAA residues at optimal sites allowing for precise conjugation for enhanced efficacy and safety
- Optimized novel hydrophilic tumor selective and stable βglucuronidase cleavable Exatecan linker payload (SC3417) for α-ROR1 and other TAA Sutro's ADCs
- Releases the high potency Exatecan Payload (SC3386).
 Payload (CPT class) have short systemic-half life
- High passive permeability payload, Exatecan ADCs showed greater bystander activity
- Efficacious in CDX, PDX models
- non GLP tox in NHPs was clinically well tolerated up to 45 mpk in repeated dose
- Overall SP11321 DAR8 ADC demonstrated improved efficacy/safety from preclinical studies; designed/optimized for significantly superior clinical performance

Sutro's Site-Specific TAA ADCs Utilizing the Novel Hydrophilic β-Glucuronidase Cleavable Exatecan Linker Payload (SC3417)

TAA1 β -glu Exatecan ADC in vivo data in breast cancer CDX model

- 0.25 mg/kg TAA1-ADC
- 0.5 mg/kg TAA1-ADC
- 1 mg/kg TAA1-ADC

TAA2 β-glu Exatecan ADC in vivo data in breast cancer CDX model

Acknowledgments

Many thanks to Sutro's dedicated scientists across different cross functional teams as well as the managers who made valuable contributions!

