SUTR: BIOPHARMA

Enhancing ADCs Both Within and Outside the Tumor with Sutro's Platform Technologies Leads to a Higher Therapeutic Index

Hans-Peter Gerber, Ph.D. CSO PEGS, May 16, 2025

ADC Development Up to 2020: Focus on Optimizing ADC Potency

- Higher potency payloads
 - PBDs, PNUs, etc.
- Novel conjugation chemistry
- Improved ADC activity
 - In vitro potency
 - In vivo xenograft

However...

Clinical ADC breakthrough in 2019 with lower potency Camptothecin/Exatecan/Topo1i ADCs

PBD – pyrrolobenzodiazepines; PNU – a highly potent secondary metabolite of nemorubicin belonging to the anthracycline class of natural products; Topo1i – topoisomerase 1 inhibition

Lower Potency Topo1 Payload Enables Higher Dosing and Exposure, Which Drives ADC Efficacy

Only 1% of ADCs reach tumors, targeting the tumor effectively when it gets there

99% reside outside tumors, limiting ADC

 exposure as premature payload release causes platform toxicity

Topo1i ADCs outside the tumor are less toxic to healthy cells:

Clinical Trial Inflection Point: Exatecan ADCs Triggered the ADC Turnaround

*First report of clinical response rates of a Her2-Exatecan/Topo1 DAR 8 ADC in Her2+ mBC

Topo1/Exatecan ADCs All Look Promising Preclinically... How Can we Identify the "Winners" Early ?

Top 10 Adjectives Describing ADC Efficacy

Adjective	Freq	Payloads	Adjectiv
Effective	90	MMAE, DM1, PBDs, <mark>Exatecan</mark>	Tolerable
Potent	85	MMAE, MMAF, PBDs, SN-38	Manage
Promising	73	MMAE, DM1, SN-38, Tubulysins	Accepta
Robust	68	DM1, PBDs, <mark>Exatecan</mark> , Tubulysins	<mark>Favorabl</mark>
<mark>Durable</mark>	60	<mark>Exatecan</mark> , SN-38, DM4	Predicta
Significant	58	MMAE, PBDs, Amanitin	Reversib
Superior	52	PBDs, <mark>Exatecan</mark> , Tubulysins	Dose-lim
Sustained	49	<mark>Exatecan</mark> , SN-38	Severe
Efficient	46	MMAF, DM1, SN-38	Serious
Encouraging	44	DM4, Tubulysins, Amanitin	Challeng

Top 10 Adjectives Describing ADC Safety

Adjective	Freq	Payloads
Tolerable	85	MMAE, MMAF, DM1, PBDs
<mark>Manageable</mark>	78	MMAE, MMAF, DM1, <mark>Exatecan</mark>
Acceptable	62	DM1, DM4, SN-38
<mark>Favorable</mark>	58	SN-38, <mark>Exatecan</mark> , MMAF
Predictable	53	DM1, DM4, MMAF
Reversible	49	DM1, DM4, SN-38, <mark>Exatecan</mark>
Dose-limiting	44	PBDs, Amanitin, Tubulysins
Severe	30	PBDs, Amanitin
Serious	27	PBDs, Amanitin
Challenging	25	Amanitin, PBDs

Only about 10% of all BioTx entering clinical development may ultimately get approved....

Key Preclinical Data to Identify "Winner" ADCs

- PK
 - Long half-life, low clearance
- Safety
 - High exposure & HNSTD (highest non severely toxic dose)
- Activity
 - In models predictive for clinical responses
 - At clinically relevant dose levels
 - In models reflecting emerging resistance to ADCs

STRO-004 (TF-Topo1-DAR8): Well-Tolerated at 50 mg/kg (Non-GLP in NHP)

Objective:

Compare nonclinical safety of DAR8 and DAR4 TF exatecan-ADC

Study:

Dosed twice, three weeks apart, payload-matched doses

Findings:

- DAR8 and DAR4 ADCs were welltolerated up to 50 and 100 mg/kg, respectively
- DAR8 50 mg/kg $t_{1/2}$ of 6.9 days
- No evidence of eye toxicity
- Mild skin toxicity observed in both DAR8 and DAR4

NHP – Non-human primate; TF – Tissue factor; TAb – Total antibody; HNSTD – Highest non-severely toxic dose

Integrin β6 is an Attractive ADC Target with Complex Biology

Steiger, et al (2021) EJNMMI Research

ITGB6 Biology

- Integrin β6 (ITGB6) is overexpressed in numerous solid tumors and has been shown to be a negative prognostic indicator in many cancers
- ITGB6 targeted therapies are seeing strong clinical activity in NSCLC
- It functions in tissue remodeling and repair, processes that can be exploited by tumors to promote invasiveness and survival
- ITGB6 is a heterodimer (αv/β6) that belongs to an integrin family of adhesion proteins; cross-specificity in targeting can introduce significant safety risks

STRO-006 Targeting ITGB6 is Well-Tolerated in NHPs up to 25 mg/kg: Long Half-Life and Low Levels of Unconjugated Exatecan

Objective:

Evaluate toxicity profile of STRO-006 in a dose-range finding study in NHPs to inform IND-enabling GLP study

Study:

Six-week duration study (1M/1F), two IV doses of 10, 25, or 50 mg/kg administered once every 3-weeks \rightarrow necropsy D43

Findings:

- STRO-006 was well-tolerated up to 25 mg/kg with no body weight loss
- No signs of neutropenia or lymphopenia
- Stable ADC, long $t_{1/2}$ of 7-8 days, no ADA
- Ratio conjugated/unconjugated exposure (AUC) of Exatecan = 10120

High ADC Exposure in NHP Correlates with Better Safety: Sutro's Cell-Free Manufacturing Approach Enables Industry-Leading ADC Exposure

Comparison of Exposure Levels in NHPs at Highest Non-Severely Toxic Dose (HNSTD) Levels in DAR Equivalents

Why does it matter?

- For ADCs, exposure drives efficacy
- Based on PK data, our exatecan ADCs are positioned to be differentiated on safety and efficacy versus on-market ADCs

Exatecan/Topo1i ADCs

STRO-004 is Safe, but is it Active? Superior Anti-Tumor Activity Compared to First Generation TF ADCs

*Breij & Parren, Can Res, 2014 # Sutro. 2024 interim data

Cmax – maximum concentration; AUClast - drug exposure over the specified time period; h – hour

Superior Anti-Tumor Activity of STRO-004 in PDX (Patient Derived Xenograft) Models at Clinically Relevant Dose Levels Compared to Tisotumab-Vedotin

Clinically Relevant ADC Dose

"ADCs administered at a similar weight-

based [milligrams per kilogram (mg/kg)]

dosing in mice that is tolerated in the clinic"

Rubahamya & Thurber, Sci.Adv.2024

•

TF expression

Superior Anti-Tumor Activity of STRO-006 Compared to First Generation Integrin Beta 6 (ITGB6) ADCs at Clinically Relevant Dose Levels

Efficacy In Models Reflective of Emerging Resistance Towards ADCs

SABCS – San Antonio Breast Cancer Symposium; ASCO – American Society of Clinical Oncology

Cell-Free Platform Enables Site-Specific Tuning of Linker-Payload Ratios

Topo1 + MTI Dual-Payload Proof-of-Concept Targeting HER2

Dual-Payload ADCs have Desirable In Vivo PK and Stability

BI

0 P

Dual-Payload ADCs have Improved In Vivo Efficacy in Ovarian Cancer Model with Reduced Enhertu Sensitivity

Vehicle control Trastuzumab DAR8 Topo1i ADC (10 mg/kg) Trastuzumab DAR8 Topo1i + DAR4 MTI (MMAE) dpADC (10 mg/kg) Enhertu (10 mg/kg)

Mice with Enhertu-resistant tumors were switched onto STRO-002 treatment and subsequently onto dual-payload ADC after exhibiting STRO-002 resistance

Dual-Payload ADCs have Improved In Vivo Efficacy in a CRC Xenograft Model

Vehicle control

Trastuzumab DAR4 MTI (MMAE) ADC (5 mg/kg) Trastuzumab DAR8 Topo1i ADC (5 mg/kg) Trastuzumab DAR8 Topo1i + DAR4 MTI (MMAE) dpADC (5 mg/kg)

CRC Xenograft Tumor Growth Curve

Vehicle control

Trastuzumab DAR4 MTI (Hemi) ADC (5 mg/kg) Trastuzumab DAR8 Topo1i ADC (5 mg/kg) Trastuzumab DAR8 Topo1i + DAR4 MTI (Hemi) dpADC (5 mg/kg)

Indications Poised to Benefit from Topo1i + anti-Tubulin Dual Payload ADCs

Dual Payload ADCs: Innovative Method for Delivering Targeted Combination Therapy

	ADC + Chemo	ADC + ADC	Dual Payload ADC	
				Potential benefits of a dual payload ADCs for targeted combination therapy
Safety (Compared to small molecule combinations)	Greater SAEs reported for ADC + chemo vs ADC ^{1,2}			Improved tolerability Through reduced systemic payload exposure
Efficacy (Control over delivery of drugs to same cell)		Binding competition impacts efficiency of delivery (for same target) ³		Greater control over delivery Both payloads delivered to the same cell at the same time
Regulatory Simplicity				Reduced clinical complexity Single agent regulatory data package, standard monotherapy dose escalation design
Combination Study Simplicity			Combo with modalities such as ICIs that have shown improved outcomes with ADCs ⁴	Reduced cost Potential for combination benefit in one product

Sources: 1. PMID: 27052654; 2. PMID: 23020162; 3. PMID: 34112795; 4. PMID: 36041086; ICI – Immune checkpoint inhibitor; TGI – Tumor growth inhibition; SAE – Severe adverse event

Sutro's Platform Enables Therapeutic Index (TI) Improvements of ADCs

Maximum Tolerated Dose (MTD) vs. Minimum Effective Dose (MED)

Adapted from Gerber et al, mAbs, 2023 HNSTD – highest non-severely toxic dose

Sutro is Recognized as Emerging Leader in Dual Paylaod ADCs: Dual Payload ADC Companies with Preclinical Data Released ⁽¹⁾

Company	Targets	Payloads	DAR	Single Payload Clinical	Target IND
	Her2/ND	Topo 1 x MTIs	8:2 8:4	MTI: Ph3	2027
SUTR: BIOPHARMA	Her2/TF/ND	Topo 1 x PARPi	8:2 8:8	Topo1: 2025 IND	твр
	ND	Topo 1 x IO	ND	IO: IND ND	iADC Astellas
GeneQuantum Healthcare 启 德 医 药	Trop2	Торо 1 х ТКІ	ND	Topo1: Ph3	-
	Her3	Торо 1 х Ю	ND	IO, TKI: No	-
Hummingbird Bioscience	Her2	Topo 1 x ATR	1:1 ratio ● : ●	No	-
🖤 ararıs	NaPi2b	Торо 1 х Торо 1	ND	No	-
	Her2	DXd x MTI	4:4 ••••:•••	No for MMAF	-
上海科技大学 ShanghalTech University	Her2	DXd x TLR7	ND	No	-
NOTE	B7H3	MTI x TLR7	3-4: 7-14 •••• : •••••	No	-

Lack of Preclinical Reports from Pharma on Dual Payload ADCs

Source, Hanson Wade: Nov 2024 ADC; Digest: Dual Payload ADCs; ND = Nondisclosed; MTI = Microtubule inhibitor; TKI = Tyrosine Kinase inhibitor; ATR = Ataxia Telangiectasia and Rad3-related; TLR7 = Toll-like receptor 7 1. These data are derived from different clinical trials at different points in time, with differences in trial design and patient populations. As a result, cross-trial comparisons cannot be made, and no head-to-head clinical trials have been conducted.

Sutro's ADC Platform is Fundamentally Different: Manufacturing of Proteins in Cell-Free Extracts

nnAA - non-natural amino acids; CF - cell-free; bsAb - bispecific antibody; GMP - good manufacturing practice

Key Sutro Technologies to Reduce Platform Toxicities Outside the Tumor

PK-pharmacokinetics

Differentiated Pipeline of ADCs, Each Designed for Improved Therapeutic Index and to Address Significant Unmet Need

TF – Tissue factor; HNSTD – Highest non-severely toxic dose; CR – Complete response

Differentiation by Design: STRO-004 and STRO-006 in NSCLC

Pipeline of Next-Generation ADCs: Three New INDs Expected Over 3 Years

PROGRAM	MODALITY/TARGET	INDICATION	DISCOVERY	PRECLINICAL	PHASE 1/1B	PHASE 2	PHASE 3/ REGISTRATIONAL	WORLDWIDE OR GEOGRAPHIC PARTNER
SUTRO-L	ED PROGRAM	S		1.1				
STRO-004	Tissue Factor ADC	Solid Tumors		•				
STRO-006	Integrin αvβ6	Solid Tumors		•				
STRO-00X	Dual Payload ADC	Solid Tumors						
STRO-00Y	Dual Payload ADC	Solid Tumors						
PARTNE	R PROGRAMS	-				- Samera		
	24. Valant	Invasive			3			

VAX-24	24-Valent Conjugate Vaccine	Invasive Pneumococcal Disease	•	VAXCYTE
VAX-31	31-Valent Conjugate Vaccine	Invasive Pneumococcal Disease		protest humanhint
STRO-003	ROR1 ADC	Solid Tumors & Hematological Cancers		§IPSEN
Undisclosed Programs	Immunostimulatory ADCs (iADCs)	Cancers		X astellas

Questions

